Skip to main content

Advertisement

Log in

Target Spot Control and Modulation of the Physiology in Cucumber Using Phosphites and Chitosan

Kontrolle der Blattfleckenkrankeit und physiologische Änderungen bei Gurken durch Phosphite und Chitosan

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Phosphites and chitosan were evaluated in target spot control, nutrition and gas exchange in cucumbers. Three weekly sprayings of commercial products were conducted, and Corynespora cassiicola (causal agent of target spot) was inoculated in the second and third true leaves four days after the last spraying. Zn, Mn, K and Cu phosphites reduced the disease severity, but the treatments had no effect on the development of the plants and the accumulation of macronutrients in the above ground part, with the exception of sulfur. The accumulation of Cu, Mn and Zn micronutrients were higher in plants treated with Cu, Mn and Zn phosphites, respectively. The green color index was influenced by the treatments after pathogen inoculation, with the highest values for Zn and Cu phosphites. Before inoculation, the products influenced net CO2 assimilation rate (A), stomatal conductance (gs) and internal CO2 concentration (Ci). The parameters gs and Ci increased, which indicates that the treatments can physiologically benefit the plants in the absence of a stress condition. After fungal inoculation, the Cu, Mn and Zn phosphites caused positive physiological effects, leading to the highest A values and adequate carboxylation efficiency (CE), which increases the capacity of plants to assimilate CO2. These phosphites also maintained adequate water use efficiency and gs and Ci values. Such indexes corresponded to lower disease severity, indicating that Mn, Zn and Cu phosphites reduced the stress caused by the disease, preserving the functionality of the photosynthetic apparatus.

Zusammenfassung

Phosphite und Chitosan wurden in Bezug auf die Kontrolle der Blattfleckenkrankheit, den Nährstoffstatus und Gasaustausch bei Gurken bewertet. Es wurden drei wöchentliche Spritzungen mit handelsüblichen Produkten durchgeführt und Corynespora cassiicola (Erreger der Blattfleckenkrankheit) wurde vier Tage nach der letzten Spritzung in den zweiten und dritten echten Blättern inokuliert. Zn‑, Mn‑, K‑ und Cu-Phosphite reduzierten die Krankheitsschwere, aber die Behandlungen hatten keinen Einfluss auf die Entwicklung der Pflanzen und die Akkumulation von Makronährstoffen im oberirdischen Teil, mit Ausnahme von Schwefel. Die Akkumulation von Cu‑, Mn- und Zn-Mikronährstoffen war bei Pflanzen, die mit Cu‑, Mn- bzw. Zn-Phosphiten behandelt wurden, höher. Der grüne Farbindex wurde durch die Behandlungen nach der Pathogeninokulation beeinflusst, mit den höchsten Werten für Zn- und Cu-Phosphite. Vor der Inokulation beeinflussten die Produkte die Netto-CO2-Assimilationsrate (A), die stomatäre Leitfähigkeit (gs) und die interne CO2-Konzentration (Ci). Die Parameter gs und Ci stiegen an, was darauf hinweist, dass die Behandlungen die Pflanzen physiologisch begünstigen können, ohne dass eine Stressbedingung vorliegt. Nach der Pilzinokulation verursachten die Cu‑, Mn- und Zn-Phosphite positive physiologische Effekte, die zu den höchsten A-Werten und einer adäquaten Carboxylierungseffizienz (CE) führten, was die Fähigkeit der Pflanzen zur CO2-Assimilation erhöht. Diese Phosphite sorgten auch für eine angemessene Wassernutzungseffizienz sowie gs- und Ci-Werte. Diese Indizes entsprachen einer geringeren Krankheitsschwere, was darauf hindeutet, dass Mn‑, Zn- und Cu-Phosphite den durch die Krankheit verursachten Stress reduzierten und die Funktionalität des photosynthetischen Apparates bewahrten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agrofit (2021) Ministério da Agricultura, Pecuária e Abastecimento. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 4 Mar 2021

  • Bastiaans L (1993) Effects of leaf blast on photosynthesis of rice 2. Leaf photosynthesis. Neth J Plant Pathol 99:197–203

    Article  Google Scholar 

  • Ben-Shalom N, Ardi R, Pinto R, Aki C, Fallik E (2003) Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot 22:285–290

    Article  CAS  Google Scholar 

  • Berger L, Stamford T, Stamford N (2011) Perspectivas para o uso da quitosana na agricultura. Rev Iberoam Polim 12:195–215

    Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot 58:4019–4026

    Article  CAS  PubMed  Google Scholar 

  • Bezerra EJS, Bentes JLS (2015) Reação de híbridos de pepino a Corynespora cassiicola no Amazonas. Summa Phytopathol 41:71–72

    Article  Google Scholar 

  • Bhusal N, Han S, Yoon T (2019) Impact of drought stress on photosynthetic response, leaf water potential, and stem sap fl ow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Sci Hortic 246:535–543

    Article  Google Scholar 

  • Bittelli M, Flury M, Campbell G, Nichols E (2001) Reduction of transpiration through foliar application of chitosan. Agric For Meteorol 107:167–175

    Article  Google Scholar 

  • Boneti JIS, Katsurayama Y (2012) Estado da arte no controle da sarna da macieira (Venturia inaequalis) no Brasil. Rev Agropec Catarinense 25:85–95

    Google Scholar 

  • Castro PRC, Serciloto CM, Pereira MA, Rodrigues JLM, Rossi G (2009) Agroquímicos de controle hormonal, fosfitos e potencial de aplicação dos aminoácidos na agricultura tropical. ESALQ, Piracicaba

    Google Scholar 

  • Celoto MIB (2009) Fisiologia e manejo de Corynespora cassiicola (Berk. & M. A. Curtis) C.T. Wei, causador da mancha alvo na cultura da acerola (Mapighia emarginata D.C.). Thesis. Universidade Estadual Paulista,

    Google Scholar 

  • Cerqueira A, Alves A, Berenguer H, Correia B, Gómez-Cadenas A, Diez JJ, Monteiro P, Pinto G (2017) Phosphite shifts physiological and hormonal profile of Monterey pine and delays Fusarium circinatum progression. Plant Physiol Biochem 114:88–99

    Article  CAS  PubMed  Google Scholar 

  • Dalio RJ, Fleischmann F, Humez M, Osswald W (2014) Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. Plos One 9:1–10

    Article  Google Scholar 

  • Daniel R, Guest D (2006) Defense responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiol Mol Plant Pathol 67:194–201

    Article  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21:703–714

    Article  CAS  Google Scholar 

  • Dodgson JLA, Dodgson W (2017) Comparison of effects of chitin and Chitosan for control of Colletotrichum sp. on cucumbers. J Pure Appl Microbiol 11:87–93

    Article  CAS  Google Scholar 

  • Dordas C (2008) Role of nutrientes in controlling plant diseases in sustainable agriculture: a review. Agron Sustain Dev 28:33–46

    Article  CAS  Google Scholar 

  • Fagundes-Nacarath IRF, Debona D, Brás VV, Silveira PR, Rodrigues FA (2018) Phosphites attenuate Sclerotinia sclerotiorum-induced physiological impairments in common bean. Acta Physiol Plant 40:198

    Article  Google Scholar 

  • Ferreira MMM, Ferreira GB, Fontes PCR, Dantas JP (2006) Índice SPAD e teor de clorofila no limbo foliar do tomateiro em função de doses de nitrogênio e da adubação orgânica, em duas épocas de cultivo. Rev Ceres 53:83–92

    Google Scholar 

  • Fischer IH, Silva LMS, Amorim L, Galli JA, Parisi MCM (2021) Response of cucumber cultivars to target spot based on epidemiological components of the disease monocycle. J Phytopathol 169:1–10

    Article  Google Scholar 

  • Flexas J (2016) Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success? Front Plant Sci 251:155–161

    Article  CAS  Google Scholar 

  • Gadaga SJC, Abreu MS, Resende MLV, Ribeiro PM Junior (2017) Phosphites for controle of anthracnose in common bean. Pesqui Agropec Bras 52:36–44

    Article  Google Scholar 

  • Ghaouth AE, Aruel J, Grenier J, Benhamou N, Asselin A, Bélanger R (1994) Effect of chitosan on cucumber plants: suppression of Pythium aphanidermatum and induction of defense reaction. Phytopathology 84:313–320

    Article  Google Scholar 

  • Guest DI, Grant BR (1991) The complex action of phosphonates as antifungal agents. Biol Rev 66:159–187

    Article  Google Scholar 

  • Ishii H, Nishimura K, Kakishima M (2011) Cucumber Corynespora leaf spot disease can be controlled by fosetyl-Al but not by a resistance inducer acibenzolar-S-methyl. The 4th Asian Conference on Plant Pathology Concurrent with the 18th Biennial Australasian Plant Pathology Society Conference, pp 42–42

    Google Scholar 

  • Junior SMB, Resende MLV, Pozza EA, Resende AR, Vasconcelos VAM, Monteiro ACA, Silveira GCD, Botelho DMS (2021) Phosphites for the management of anthracnose in soybean pods. J Plant Pathol 103:1–15

    Google Scholar 

  • Juárez MGY, Rocha JFL, Ângulo TPG, Luque RG, Meza ML, Ortega JEC, Díaz LC (2012) Alternativas para el control de la cenicilla (Oidium sp.) en pepino (Cucumis sativus L.). Rev Mexicana Cienc Agric 3:259–270

    Google Scholar 

  • Júnior SMB (2017) Fosfitos no manejo da antracnose da soja. Thesis. Universidade Federal de Lavras,

    Google Scholar 

  • Kannan H (1986) Foliar absorption and transport of inorganic nutrients. Crit Rev Sci 4:341–375

    Article  CAS  Google Scholar 

  • Lee TM, Tsai PF (2005) The effects of phosphate on phosphate starvation responses of Ulva lactuca (Ulvales, chlorophyta). J Phycol 41:975–982

    Article  CAS  Google Scholar 

  • Li J, Cang Z, Jiao F, Bai X, Zhang D, Zhai R (2017) Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J Saudi Soc Agric Sci 16:82–88

    Google Scholar 

  • Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2:316–320

    Article  Google Scholar 

  • Liu DW, Liu D, Liu QY, Zhang D, Tao L, Zhang YJ (2019) First report of cucumber target leaf spot, Corynespora cassiicola, on cucumber in Heilongjiang, Northeastern China. Plant Dis 103:765–765

    Article  Google Scholar 

  • Lovatt CJ, Mikkelsen RL (2006) Phosphites fertilizers. Better Crop Plant Food 90:11–13

    Google Scholar 

  • Malavolta E, Vitti GC, Oliveira SA (1997) Avaliação do estado nutricional das plantas: princípios e aplicações, 2nd edn. Potafos, Piracicaba

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martins MC, Fischer IH, Veiga JS, Lourenco AS (2003) Ocorrência da mancha-alvo causada por Corynespora cassicola em pepino (Cucumis sativus) no Brasil. Fitopatol Bras 28:208

    Google Scholar 

  • McDonald AE, Grant B, Plaxton WC (2001) Phosphite (phosphorous acid): Its relevance in the environment and agriculture and influence on plant phosphate starvation response. J Plant Nutr 24:1505–1519

    Article  CAS  Google Scholar 

  • Mondal MMA, Malek MA, Puteh A (2012) Effect of foliar aplication of chitosan on growth and yield in okra. Aust J Crop Sci 6:918–921

    CAS  Google Scholar 

  • Moret A, Munoz Z, Garces S (2009) Control of powdery mildew on cucumber cotyledons by chitosan. J Plant Pathol 91:375–380

    CAS  Google Scholar 

  • Nojosa GBA, Resende MLV, Resende AV (2005) Uso de fosfitos e silicatos na indução de resistência. In: Cavalcanti LS, Di Piero RM, Cia P, Pascholati SF, Resende MLV, Romeiro RS (eds) Indução de resistência em plantas a patógenos e insetos. FEALQ, Piracicaba, pp 139–153

    Google Scholar 

  • Novaes MIC, Debona D, Fagundes-Nacarath IRF, Brás VV, Rodrigues FA (2019) Physiological and biochemical responses of soybean to white mold affected by manganese phosphite and fluazinam. Acta Physiol Plant 41:1–16

    Article  CAS  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:1–8

    Article  Google Scholar 

  • Panicker S, Gangadharam K (1999) Controlling downy mildew of maize caused by Peronosclerospora sorghi by foliar sprays of phosphonic acid compounds. Crop Protec 18:115–118

    Article  CAS  Google Scholar 

  • Pavan MA, Rezende JAM, Krause-Sakate R (2016) Doenças das cucurbitáceas. In: Amorim L, Rezende JAM, Bergamin Filho A, Camargo LEA (eds) Manual de fitopatologia, 5th edn. vol 2. Agronômica Ceres, Ouro Fino, pp 323–334

    Google Scholar 

  • Pennazio S (2005) Mineral nutrition of plants: a short history of plant physiology. Riv Biol 98:215–236

    PubMed  Google Scholar 

  • Piva R, Botelho RV, Lima PCG, Rombola AD (2019) Desenvolvimento, fisiologia e ocorrência de míldio em videiras cv. BRS Margot tratadas com preparados biodinâmicos. Rev Cienc Agrar 42:201–210

    Google Scholar 

  • Pôrto ML, Puiatti M, Fontes PCR, Cecon PR, Alves JC, Arruda JA (2011) Índice SPAD para o diagnóstico do estado de nitrogênio na cultura da abobrinha. Hortic Bras 29:311–315

    Article  Google Scholar 

  • Rabea E, Badawy MET, Stevens C, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Reis CO, Magalhães PC, Avila RG, Almeida LG, Rabelo VM, Carvalho DT, Cabral DF, Karam D, Souza TC (2019) Action of N‑Succinyl and N, O‑Dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. J Plant Growth Regul 38:619–630

    Article  Google Scholar 

  • Rendina N, Nuzzaci M, Scopa A, Cuypers A, Sofo A (2019) Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants. J Plant Physiol 234:9–17

    Article  PubMed  Google Scholar 

  • Rengel Z, Graham RD, Pedler JF (1993) Manganese nutrition and accumulation of phenolics and lignina as related to differential resistance of wheat genotypes to the take-all fungus. Plant Soil 151:255–263

    Article  CAS  Google Scholar 

  • Rickard DA (2000) Review of phosphorous acid and its salts as fertilizer materials. J Plant Nutr 23:191–180

    Article  Google Scholar 

  • Schroetter S, Angeles–Wedler D, Kreuzig R, Schnug E (2006) Effects of phosphite on phosphorus suplly and growth of corn (Zea mays). Landbauforsch Volkenrode 56:87–99

    CAS  Google Scholar 

  • Shehata SA, Fawzy ZF, El-Ramady HR (2012) Response of cucumber plants to foliar applicaton of chitosan and yeast under greenhouse conditions. Aust J Basic Appl Sci 6:63–71

    CAS  Google Scholar 

  • Singh VK, Wood SM, Knowles VL, Plaxton WC (2003) Phosphite accelerates programmed cell death in phosphate-starved oilseed rape (Brassica napus) suspension cell cultures. Planta 218:233–239

    Article  CAS  PubMed  Google Scholar 

  • Sumabat LG, Kemerait RC, Brewer MT (2018) Phylogenetic diversity and host specialization of Corynespora cassiicola responsible for emerging target spot disease of cotton and other crops in the Southeastern United States. Phytopathology 108:892–901

    Article  PubMed  Google Scholar 

  • Teramoto A, Martins MC, Ferreira LC, Cunha MG (2011) Reaction of hybrids, inhibition in vitro and target spot control in cucumber. Hortic Bras 29:342–348

    Article  Google Scholar 

  • Thao HTB, Yamakawa T, Shibata K, Sarr PS, Myint AK (2008) Growth response of komatsuma (Brassica rapa var. peruvirids) to root and foliar applications of phosphate. Plant Soil 308:1–10

    Article  CAS  Google Scholar 

  • Töfoli JG, Mello SC, Domingues RJ (2012) Efeito do fosfito de potássio isolado e em mistura com fungicidas no controle da requeima do tomateiro. Arq Inst Biol 79:201–208

    Article  Google Scholar 

  • Trinidad SAY, Aguilar MD (1999) Fertilización foliar, un respaldo importante en el rendimiento de los cultivos. Terra 17:247–255

    Google Scholar 

  • Verzignassi JR, Vida JB, Tessmann DJ (2003) Epidemias de Mancha de Corinespora em Pepino “Tipo Japonês” sob Cultivo Protegido na Região Norte do Estado do Paraná. Fitopatol Bras 28:570–570

    Article  Google Scholar 

  • Vida JB, Zambolim L, Tessmann DJ, Brandão Filho JUT, Verzignassi JR, Caixeta MP (2004) Manejo de doenças na produção de cucurbitáceas em cultivo protegido. Fitopatol Bras 29:355–372

    Article  Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Phisiol 167:1298–1306

    Article  CAS  Google Scholar 

  • Wang S, Yang Z, Yang H, Lu B, Li S, Lu Y (2004) Copper-induced stress and antioxidative responses in roots of Brassica juncea. Bot Bull Acad Sinica Taipei 45:203–212

    CAS  Google Scholar 

  • Xu C, Mou B (2018) Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTechnology 28:476–480

    Article  CAS  Google Scholar 

  • Yurekli F, Porgali ZB (2006) The effect of excessive exposure to copper in bean plants. Acta Biol Crac 48:7–13

    Google Scholar 

  • Zhao H, Wu L, Chai T, Zhang Y, Tan J, Ma S (2012) The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperacumulatior Phytolacca americana. J Plant Physiol 169:1243–1252

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The conduct of the research was supported by the São Paulo State Foundation for Research Support (FAPESP) as part of the research project (2018/02966-3). The phosphites were donated by the fertilizer companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Herman Fischer.

Ethics declarations

Conflict of interest

I.H. Fischer, L. Meleiro da Silva, R. Marques de Almeida Bertani, A.C. Fernandes Deus, V. Mota da Silva and M. de Almeida Silva declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, I.H., Meleiro da Silva, L., Marques de Almeida Bertani, R. et al. Target Spot Control and Modulation of the Physiology in Cucumber Using Phosphites and Chitosan. Gesunde Pflanzen 73, 521–531 (2021). https://doi.org/10.1007/s10343-021-00571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-021-00571-5

Keywords

Schlüsselwörter

Navigation