Skip to main content
Log in

Agrogenic and Postagrogenic Changes in Physical Properties and Carbon Stocks in Dark-Humus Podbels

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The changes in the physical properties and carbon stocks of dark-humus podbels (Luvic Albic Mollic Planosols (Epiloamic, Endoclayic, Aric)) during long-term agricultural use and postagrogenic evolution were studied. Soil samples were taken in three trials: control (without fertilizers), high rates of mineral fertilizers, and mineral fertilizers + manure + lime (Chaika Experimental Field Station of the Federal Research Center for Agrobiotechnology of the Far East, Primorsky region) and in the abandoned fields (15, 20, and 35 years ago). It was shown that the long-term application of mineral fertilizers increases the soil bulk density. Application of organic and mineral fertilizers and lime had a positive effect on the bulk density and structural characteristics of soils. The abandonment of agricultural fields and the cessation of mechanical tillage resulted in the restoration of the natural soil structure. The content of agronomically valuable aggregates increased, while their mean weighted diameter decreased in the upper horizon of studied fallow soils. The carbon content and stock in the upper soil layer decreased in the first years of the conversion of arable fields to unmanaged fallow. The carbon stock in the upper 50-cm layer increased with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Agrochemical Analysis of Soils (Nauka, Moscow, 1975) [in Russian].

  2. Z. S. Artem’eva, “Dynamics of qualitative composition of organic matter of soddy-podzolic soils during afforestation of arable lands,” Probl. Reg. Ekol., No. 2, 54–59 (2017).

  3. Yu. I. Baeva, I. N. Kurganova, V. O. Lopes de Gerenyu, A. V. Pochikalov, and V. N. Kudeyarov, “Changes in physical properties and carbon stocks of gray forest soils in the southern part of Moscow region during postagrogenic evolution,” Eurasian Soil Sci. 50, 327–334 (2017). https://doi.org/10.1134/S1064229317030024

    Article  Google Scholar 

  4. M. L. Burdukovskii, V. I. Golov, and I. G. Kovshik, “Changes in the agrochemical properties of major arable soils in the south of the Far East of Russia under the impact of their long-term agricultural use,” Eurasian Soil Sci. 49, 1174–1179 (2016). https://doi.org/10.1134/S1064229316100057

    Article  Google Scholar 

  5. A. S. Vladychenskii, V. M. Telesnina, K. A. Rumyantseva, and T. A. Chalaya, “Organic matter and biological activity of postagrogenic soils in the southern taiga using the example of Kostroma oblast,” Eurasian Soil Sci. 46, 518–529 (2013). https://doi.org/10.1134/S1064229313050141

    Article  Google Scholar 

  6. V. I. Golov, Cycles of Sulfur and Trace Elements in Major Agroecosystems of the Far East (Dal’nauka, Vladivostok, 2004) [in Russian].

    Google Scholar 

  7. The Governmental Program “Development of Agriculture and Market Regulation of Agricultural Products, Raw Materials, and Food. Improvement of the Life Quality of Rural Population in Primorskii Krai for 2013–2020” (Moscow, 2012) [in Russian].

  8. F. R. Zaidel’man, Podzolization and Gleyzation (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  9. G. I. Ivanov, Pedogenesis in the South of the Far East (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  10. D. V. Karelin, S. V. Goryachkin, A. V. Kudikov, V. O. Lopes de Gerenu, V. N. Lunin, A. V. Dolgikh, and D. I. Lyuri, “Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia,” Eurasian Soil Sci. 50, 559–572 (2017). https://doi.org/10.1134/S1064229317050076

    Article  Google Scholar 

  11. N. A. Kachinskii, Soil Physics (Vysshaya Shkola, Moscow, 1965), Vol. 1.

    Google Scholar 

  12. V. A. Kovda, Overcompaction of Arable Soils: Reasons, Consequences, and Control Measures (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  13. V. A. Korolev and L. D. Stakhurlova, “Effect of fertilizers on the main fertility parameters of leached chernozems,” Eurasian Soil Sci. 37, 521–527 (2004).

    Google Scholar 

  14. N. M. Kostenkov and V. I. Oznobikhin, “Soils and soil resources in the southern Far East and their assessment,” Eurasian Soil Sci. 39, 461–469 (2006).

    Article  Google Scholar 

  15. I. V. Kuznetsova, “Changes in the physical status of the typical and leached chernozems of Kursk oblast within 40 years,” Eurasian Soil Sci. 46, 393–400 (2013). https://doi.org/10.1134/S106422931304008X

    Article  Google Scholar 

  16. I. I. Lebedeva, Yu. I. Cheverdin, T. V. Titova, A. M. Grebennikov, and L. G. Markina, “Structural state of migrational-mycelial (typical) agrochernozems of the Kamennaya Steppe on plowed fields of different ages,” Eurasian Soil Sci. 50, 218–228 (2017). https://doi.org/10.1134/S1064229317020090

    Article  Google Scholar 

  17. A. V. Litvinovich and O. Yu. Pavlova, “Changes in the humus status of a layland sandy gleyic soddy-podzolic soil,” Eurasian Soil Sci. 40, 1181–1186 (2007).

    Article  Google Scholar 

  18. D. I. Lyuri, S. V. Goryachkin, N. A. Karavaeva, E. A. Denisenko, and T. T. Nefedova, Dynamics of Agricultural Lands of Russia in the 20th Century and Postagrogenic Recovery of Vegetation and Soils (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  19. D. S. Orlov and O. N. Biryukova, “Carbon reserves in organic compounds in soils of Russian Federation,” Pochvovedenie, No. 1, 21–32 (1995).

    Google Scholar 

  20. D. S. Orlov and L. A. Grishina, Practicum on Humus Chemistry (Moscow State Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  21. L. N. Purtova and N. M. Kostenkov, Energy Balance of Soils in the Far East of Russia (Dal’nauka, Vladivostok, 2003) [in Russian].

    Google Scholar 

  22. L. N. Purtova, N. M. Kostenkov, and L. N. Shchapova, “Assessing the humus status and CO2 production in soils of anthropogenic and agrogenic landscapes in southern regions of the Russian Far East,” Eurasian Soil Sci. 50, 42–48 (2017). https://doi.org/10.1134/S1064229317010124

    Article  Google Scholar 

  23. V. V. Rzaeva and V. A. Fedotkin, “Quality of main soil tillage method and assessment of sawing depth of winter wheat,” Zemledelie, No. 5, 23–24 (2013).

    Google Scholar 

  24. A. M. Rusanov, “Current stage of the restoration of chernozems in rangeland ecosystems of the steppe zone,” Eurasian Soil Sci. 48, 664–670 (2015). https://doi.org/10.1134/S1064229315060095

    Article  Google Scholar 

  25. A. N. Rybakova and O. A. Sorokina, “Assessment of fertility indicators of post-agrogenic grey soils of fallow lands after various use,” Plodorodie, No. 3 (72), 31–33 (2013).

    Google Scholar 

  26. I. M. Ryzhova, A. A. Erokhova, and M. A. Podvezennaya, “Dynamics and structure of carbon storage in the postagrogenic ecosystems of the southern taiga,” Eurasian Soil Sci. 47, 1207–1215 (2014). https://doi.org/10.1134/S1064229314090117

    Article  Google Scholar 

  27. Agriculture in Russia, 2019: Statistical Handbook (Rosstat, Moscow, 2019) [in Russian].

  28. E. P. Sinel’nikov, Optimization of Properties and Regimes of Periodically Overmoistened Soils (Primorskaya State Academy of Agriculture, Ussuriisk, 2000) [in Russian].

  29. Agricultural System in Amur Oblast: Industrial-Practical Handbook (Far Eastern State Agricultural Univ., Blagoveshchensk, 2016) [in Russian].

  30. V. M. Telesnina, I. N. Kurganova, V. O. Lopes de Gerenyu, L. A. Ovsepyan, V. I. Lichko, A. M. Ermolaev, and D. M. Mirin, “Dynamics of soil properties and plant composition during postagrogenic evolution in different bioclimatic zones,” Eurasian Soil Sci. 50, 1515–1534 (2017). https://doi.org/10.1134/S1064229317120109

    Article  Google Scholar 

  31. A. A. Titlyanova, Biological Cycle of Carbon of Herbaceous Biogeocenoses (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  32. O. I. Filippova, V. A. Kholodov, N. A. Safronova, A. V. Yudina, and N. A. Kulikova, “Particle-size, microaggregate-size, and aggregate-size distributions in humus horizons of the zonal sequence of soils in European Russia,” Eurasian Soil Sci. 52, 300–312 (2019). https://doi.org/10.1134/S1064229319030037

    Article  Google Scholar 

  33. D. S. Fomin, I. A. Valdes-Korovkin, A. P. Golub, and A. V. Yudina, “The analysis of the aggregate composition of soils by the automatic sowing,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 96, 149–177 (2019). https://doi.org/10.19047/0136-1694-2019-96-149-177

    Article  Google Scholar 

  34. N. V. Khavkina, Humification and Transformation of Organic Matter in Conditions of Temporary Gleyzation (Primorskaya State Academy of Agriculture, Ussuriisk, 2004) [in Russian].

  35. V. A. Kholodov, N. V. Yaroslavtseva, Yu. R. Farkhodov, V. P. Belobrov, S. A. Yudin, A. Ya. Aydiev, V. I. Lazarev, and A. S. Frid, “Changes in the ratio of aggregate fractions in humus horizons of chernozems in response to the type of their use,” Eurasian Soil Sci. 52, 162–170 (2019). https://doi.org/10.1134/S1064229319020066

    Article  Google Scholar 

  36. E. V. Shein, Lecturers on Soil Physics (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  37. E. V. Shein, V. I. Lazarev, A. Yu. Aidiev, T. Sakunkonchak, M. Ya. Kuznetsov, E. Yu. Milanovskii, and D. D. Khaidapova, “Changes in the physical properties of typical chernozems of Kursk oblast under the conditions of a long-term stationary experiment,” Eurasian Soil Sci. 44, 1097–1103 (2011).

    Article  Google Scholar 

  38. L. Alakukku, “Persistence of soil compaction due to high axle load traffic. II. Long-term effects on the properties of fine-textured and organic soils,” Soil Tillage Res. 37, 223–238 (1996). https://doi.org/10.1016/0167-1987(96)01017-3

    Article  Google Scholar 

  39. Structure and Organic Matter Storage in Agricultural Soils, Ed. by M. R. Carter and B. A. Stewart (CRC Press, Boca Raton, FL, 1996).

    Google Scholar 

  40. A. J. Franzluebbers, “Water infiltration and soil structure related to organic matter and its stratification with depth,” Soil Tillage Res. 66, 97–205 (2002). https://doi.org/10.1016/S0167-1987(02)00027-2

    Article  Google Scholar 

  41. J. Glinski and J. Lipiec, Soil Physical Conditions and Plant Roots (CRC Press, Boca Raton, FL, 1990).

    Google Scholar 

  42. L. B. Guo and R. M. Gifford, “Soil carbon stock and land use change: a meta-analysis,” Global Change Biol. 8 (4), 345–360 (2002). https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  43. D. Hillel, Introduction to Environmental Soil Physic (Elsevier, Amsterdam, 2003).

    Google Scholar 

  44. R. Joffre, S. Rambal, and F. Romane, “Local variations of ecosystem functions in Mediterranean evergreen oak woodland,” Ann. Sci. For. 53, 561–570 (1996).

    Article  Google Scholar 

  45. I. Kurganova, V. Lopes de Gerenyu, J. Six, and Y. Kuzyakov, “Carbon cost of collective farming collapse in Russia,” Global Change Biol. 20 (3), 938–947 (2014). https://doi.org/10.1111/gcb.12379

    Article  Google Scholar 

  46. M. J. Kooistra and O. H. Boersma, “Subsoil compaction in Dutch marine sandy loams: loosening practices and effects,” Soil Tillage Res. 29, 237–247 (1994). https://doi.org/10.1016/0167-1987(94)90062-0

    Article  Google Scholar 

  47. Y. Lipiec and R. Hatano, “Quantification of compaction effects on soil physical properties and crop growth,” Geoderma 116, 107–136 (2003). https://doi.org/10.1016/S0016-7061(03)00097-1

    Article  Google Scholar 

  48. P. R. Poulton, E. Pye, P. R. Hargreaves, and D. S. Jenkinson, “Accumulation of carbon and nitrogen by old arable land reverting to woodland,” Global Change Biol. 9, 942–955 (2003). https://doi.org/10.1046/j.1365-2486.2003.00633.x

    Article  Google Scholar 

  49. M. L. Stratton, A. V. Barker, and J. E. Rechcigl, “Compost,” in Soil Amendments and Environmental Quality, Ed. by J. E. Rechcigl (CRC Press, Boca Raton, FL, 1995), pp. 249–309.

    Google Scholar 

  50. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

Download references

Funding

This work was supported in part by Russian Science Foundation, project no. 17-76-10011. The work was carried out using the equipment of the Instrumental Centre for Biotechnology and Gene Engineering at the Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Division, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Burdukovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdukovskii, M.L., Golov, V.I., Perepelkina, P.A. et al. Agrogenic and Postagrogenic Changes in Physical Properties and Carbon Stocks in Dark-Humus Podbels. Eurasian Soil Sc. 54, 943–950 (2021). https://doi.org/10.1134/S1064229321060041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321060041

Keywords:

Navigation