Skip to main content
Log in

A meshfree Hermite point interpolation method for buckling and post-buckling analysis of thin plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper aims to develop a meshfree approach based on the coupling of the Hermite-type point interpolation method (HPIM) and a high order continuation (HOC) Solver for numerical simulation of the geometrically nonlinear problems that require higher order continuity shape functions such as the buckling of a thin plate. The point interpolation method (PIM) and Hermite-type point interpolation method (HPIM) shape functions construction procedure is presented in detail. The first type is used to approximate the in-plane displacements, while the second one is used for the transverse component and its derivatives. The standard Galerkin method is adopted to discretize the governing partial differential equations which were derived from using the Kirchhoff’s plate theory. The resolution of the considered problem is performed thanks to a solver that combines a Taylor series expansion with a continuation procedure. Numerical examples with different geometric shapes, various boundary conditions and loadings are given to verify the efficiency, accuracy, and robustness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Askour O, Mesmoudi S, Braikat B (2020) On the use of radial point interpolation method (RPIM) in a high order continuation for the resolution of the geometrically nonlinear elasticity problems. Eng Anal Boundary Elem 110:69–79

    Article  MathSciNet  MATH  Google Scholar 

  3. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  4. Bathe K (1996) Finite element procedures (book style). Prentice hall, Englewood Cliffs

  5. Batoz J, Dhatt G (1990) Modélisation des structures par éléments finis, vol 2. Hermès, Paris

    MATH  Google Scholar 

  6. Belytschko T, Lin JI (1987) A three-dimensional impact-penetration algorithm with erosion. Int J Impact Eng 5(1–4):111–127

    Article  MATH  Google Scholar 

  7. Belytschko T, Lu Y, Gu L, Tabbara M (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32(17):2547–2570

    Article  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  9. Birman V (2011) Plate structures, vol 178. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  10. Bourihane O, Braikat B, Jamal M, Mohri F, Damil N (2016) Dynamic analysis of a thin-walled beam with open cross section subjected to dynamic loads using a high-order implicit algorithm. Eng Struct 120:133–146

    Article  Google Scholar 

  11. Bourihane O, Ed-Dinari A, Braikat B, Jamal M, Mohri F, Damil N (2016) Stability analysis of thin-walled beams with open section subject to arbitrary loads. Thin-Walled Struct 105:156–171

    Article  Google Scholar 

  12. Bourihane O, Hilali Y, Mhada K (2020) Nonlinear dynamic response of functionally graded material plates using a high-order implicit algorithm. ZAMM Zeitschr Angew Math Mech 100:12. https://doi.org/10.1002/zamm.202000087

    Article  MathSciNet  Google Scholar 

  13. Bourihane O, Mhada K, Sitli Y (2020) New finite element model for the stability analysis of a functionally graded material thin plate under compressive loadings. Acta Mech 231(4):1587–1601

    Article  MathSciNet  MATH  Google Scholar 

  14. Cochelin B (1994) A path-following technique via an asymptotic-numerical method. Comput Struct 53(5):1181–1192

    Article  MATH  Google Scholar 

  15. Cochelin B, Damil N, Potier-Ferry M (2007) Méthode asymptotique numérique. Hermès-Lavoisier, Paris

    MATH  Google Scholar 

  16. Damil N, Potier-Ferry M (1990) A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures. Int J Eng Sci 28(9):943–957

    Article  MathSciNet  MATH  Google Scholar 

  17. Dhatt G, Touzot G (1981) Une présentation de la méthode des éléments finis. Presses Université Laval

  18. D’Ottavio M, Polit O (2017) Classical, first order, and advanced theories. In: Stability and vibrations of thin walled composite structures, pp 91–140. Elsevier

  19. Hilali Y, Bourihane O (2021) A mixed MLS and hermite-type MLS method for buckling and postbuckling analysis of thin plates. Structures 33:2349–2360. https://doi.org/10.1016/j.istruc.2021.05.086

    Article  Google Scholar 

  20. Hilali Y, Braikat B, Lahmam H, Damil N (2017) Effect of regularized functions on the dynamic response of a clutch system using a high-order algorithm. Compt Rend Mécanique 345(11):764–778

    Article  Google Scholar 

  21. Hilali Y, Braikat B, Lahmam H, Damil N (2018) An implicit algorithm for the dynamic study of nonlinear vibration of spur gear system with backlash. Mech Industry 19:3

    Article  Google Scholar 

  22. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation

  23. Liu G, Gu Y (2001) A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids. J Sound Vib 246(1):29–46

    Article  Google Scholar 

  24. Liu G, Yan L (1999) A study on numerical integration in element-free methods. In: Proceeding of 4th Asia-Pacific conference on computational mechanics, Singapore, pp 979–984

  25. Liu GR, Chen XL, Reddy JN (2002) Buckling of symmetrically laminated composite plates using the element-free Galerkin method. Int J Struct Stab Dyn 02(03):281–294

    Article  MATH  Google Scholar 

  26. Liu GR, Gu Y (2001) A point interpolation method for two-dimensional solids. Int J Numer Meth Eng 50(4):937–951

    Article  MATH  Google Scholar 

  27. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer Science & Business Media, Berlin

    Google Scholar 

  28. Liu GR, Zhang G, Gu Y, Wang Y (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36(6):421–430

    Article  MathSciNet  MATH  Google Scholar 

  29. Mesmoudi S, Braikat A, Timesli B, Lahmam H, Zahrouni H (2017) A 2D mechanical thermal coupled model to simulate the material mixing observed in friction stir welding process. Eng Comput 33(4):885–895

    Article  Google Scholar 

  30. Mitchell AR, Griffiths DF (1980) The finite difference method in partial differential equations. A Wiley-Interscience Publication

  31. Mottaqui H, Braikat B, Damil N (2010) Discussion about parameterization in the asymptotic numerical method: application to nonlinear elastic shells. Comput Methods Appl Mech Eng 199(25–28):1701–1709

    Article  MathSciNet  MATH  Google Scholar 

  32. Nguyen HX, Nguyen TN, Abdel-Wahab M, Bordas S, Nguyen-Xuan H, Vo TP (2017) A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput Methods Appl Mech Eng 313:904–940. https://doi.org/10.1016/j.cma.2016.10.002

    Article  MathSciNet  MATH  Google Scholar 

  33. Nguyen TN, Ngo TD, Nguyen-Xuan H (2017) A novel three-variable shear deformation plate formulation: theory and isogeometric implementation. Comput Methods Appl Mech Eng 326:376–401. https://doi.org/10.1016/j.cma.2017.07.024

    Article  MathSciNet  MATH  Google Scholar 

  34. Nguyen TN, Thai CH, Luu AT, Nguyen-Xuan H, Lee J (2019) NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells. Comput Methods Appl Mech Eng 347:983–1003

    Article  MathSciNet  MATH  Google Scholar 

  35. Rammane M, Mesmoudi S, Tri A, Braikat B, Damil N (2020) Bifurcation points and bifurcated branches in fluids mechanics by high-order mesh-free geometric progression algorithms. Int J Numer Meth Fluids 93(3):834–852

    Article  MathSciNet  Google Scholar 

  36. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    Article  MathSciNet  MATH  Google Scholar 

  37. Sitli Y, Mhada K, Bourihane O, Rhanim H (2021) Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the asymptotic numerical method. Structures 31:1031–1040. https://doi.org/10.1016/j.istruc.2021.01.100

    Article  Google Scholar 

  38. Thai CH, Kulasegaram S, Tran LV, Nguyen-Xuan H (2014) Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput Struct 141:94–112. https://doi.org/10.1016/j.compstruc.2014.04.003

    Article  Google Scholar 

  39. Timoshenko S, Gere J (1961) Theory of elastic stability. McGraw-Hill book, Hoboken

    Google Scholar 

  40. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education, London

    Google Scholar 

  41. Wang J, Liu G (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Eng 191(23–24):2611–2630

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54(11):1623–1648

    Article  MATH  Google Scholar 

  43. Wang J, Liu G, Lin P (2002) Numerical analysis of biot’s consolidation process by radial point interpolation method. Int J Solids Struct 39(6):1557–1573

    Article  MATH  Google Scholar 

  44. Wang J, Liu G, Wu Y (2001) Several numerical problems in point interpolation methods. Commun Numer Methods Eng 2001:160

    Google Scholar 

  45. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Bourihane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilali, Y., Bourihane, O. A meshfree Hermite point interpolation method for buckling and post-buckling analysis of thin plates. Engineering with Computers 38 (Suppl 4), 3171–3190 (2022). https://doi.org/10.1007/s00366-021-01457-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01457-w

Keywords

Navigation