Skip to main content

Advertisement

Log in

The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

A Correction to this article was published on 15 May 2021

This article has been updated

Abstract

Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down’s syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  • Abelson J, Kwan K, O’Roak B, Baek D, Stillman A, Morgan T, Mathews C, Pauls D, Rasin M, Gunel M, Davis N, Ercan-Sencicek A, Guez D, Spertus J, Leckman J, Dure L, Kurlan R, Singer H, Gilbert D, Farhi A, Louvi A, Lifton R, Sestan N, State M (2005) Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310(5746):317–320

    CAS  PubMed  Google Scholar 

  • Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, Lao K, Kosik KS (2008) Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 9:153–161

    CAS  PubMed  Google Scholar 

  • Adams CM, Hiebert SW, Eischen CM (2016) Myc induces miRNA-mediated apoptosis in response to HDAC inhibition in hematologic malignancies. Can Res 76(3):736–748

    CAS  Google Scholar 

  • Agnew-Blais J, Polanczyk G, Danese A, Wertz J, Moffitt T, Arseneault L (2018) Young adult mental health and functional outcomes among individuals with remitted, persistent and late-onset ADHD. Br J Psychiatry 213(3):526–534

    PubMed  PubMed Central  Google Scholar 

  • Ai J, Sun L-H, Che H, Zhang R, Zhang T-Z, Wu W-C, Su X-L, Chen X, Yang G, Li K (2013) MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J Neurosci 33:3989–4001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alabaf S, Gillberg C, Lundström S, Lichtenstein P, Kerekes N, Råstam M, Anckarsäter H (2019) Physical health in children with neurodevelopmental disorders. J Autism Dev Disord 49(1):83–95

    PubMed  Google Scholar 

  • Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519:482–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov PN, Percy ME, Lukiw WJ (2018) Chromosome 21-encoded microRNAs (mRNAs): impact on Down’s syndrome and Trisomy-21 linked disease. Cell Mol Neurobiol 38(3):769–774

    CAS  PubMed  Google Scholar 

  • Alldred S, Takwoingi Y, Guo B, Pennant M, Deeks J, Neilson J, Alfirevic Z (2017) First trimester ultrasound tests alone or in combination with first trimester serum tests for Down's syndrome screening. Cochrane Database of Systematic Reviews

  • Allen-Brady K, Robison R, Cannon D, Varvil T, Villalobos M, Pingree C, Leppert MF, Miller J, McMahon WM, Coon H (2010) Genome-wide linkage in Utah autism pedigrees. Mol Psych 15:1006–1015

    CAS  Google Scholar 

  • Alvarez-Mora M, Calvo Escalona R, Puig Navarro O, Madrigal I, Quintela I, Amigo J, Martinez-Elurbe D, Linder-Lucht M, Aznar Lain G, Carracedo A, Mila M, Rodriguez-Revenga L (2016) Comprehensive molecular testing in patients with high functioning autism spectrum disorder. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 784–785:46–52

    PubMed  Google Scholar 

  • Amaral DG (2017) Examining the causes of autism. Cerebrum : the Dana forum on brain science, 2017, cer-01–17

  • American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Arlington, VA

    Google Scholar 

  • Ander B, Barger N, Stamova B, Sharp F, Schumann C (2015) Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism, 6(1)

  • Anderson D, Liang J, Lord C (2014) Predicting young adult outcome among more and less cognitively able individuals with autism spectrum disorders. J Child Psychol Psychiatry 55(5):485–494

    PubMed  Google Scholar 

  • Andolfo I, De Falco L, Asci R, Russo R, Colucci S, Gorrese M, Zollo M, Iolascon A (2010) Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica 95(8):1244–1252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angulo-Barroso R, Burghardt A, Lloyd M, Ulrich D (2008) Physical activity in infants with Down syndrome receiving a treadmill intervention. Infant Behav Dev 31(2):255–269

    PubMed  Google Scholar 

  • Antic S, Wolfinger MT, Skucha A, Hosiner S, Dorner S (2015) General and microRNA-mediated mRNA degradation occurs on ribosome complexes in Drosophila cells. Mol Cell Biol 35(13):2309–2320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arena A, Iyer AM, Milenkovic I, Kovacs GG, Ferrer I, Perluigi M, Aronica E (2017) Developmental expression and dysregulation of miR-146a and miR-155 in Down’s syndrome and mouse models of Down’s syndrome and Alzheimer’s disease. Curr Alzheimer Res 14(12):1305–1317

    CAS  PubMed  Google Scholar 

  • Arora NK, Nair MKC, Gulati S, Deshmukh V, Mohapatra A, Mishra D, Patel V, Pandey RM, Das BC, Divan G, Murthy GVS, Sharma TD, Sapra S, Aneja S, Juneja M, Reddy SK, Suman P, Mukherjee SB, Dasgupta R, Tudu P, Das MK, Bhutani VK, Durkin MS, Pinto-Martin J, Silberberg DH, Sagar R, Ahmed F, Babu N, Bavdekar S, Chandra V, Chaudhuri Z, Dada T, Dass R, Gourie-Devi M, Remadevi S, Gupta JC, Handa KK, Kalra V, Karande S, Konanki R, Kulkarni M, Kumar R, Maria A, Masoodi MA, Mehta M, Mohanty SK, Nair H, Natarajan P, Niswade AK, Prasad A, Rai SK, Russell PSS, Saxena R, Sharma S, Singh AK, Singh GB, Sumaraj L, Suresh S, Thakar A, Parthasarathy S, Vyas B, Panigrahi A, Saroch MK, Shukla R, Rao KVR, Silveira MP, Singh S, Vajaratkar V (2018) Neurodevelopmental disorders in children aged 2–9 years: population-based burden estimates across five regions in India. PLoS Med 15(7):e1002615

    PubMed  PubMed Central  Google Scholar 

  • Asuthkar S, Velpula KK, Chetty C, Gorantla B, Rao JS (2012) Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget 3(11):1439–1454

    PubMed  PubMed Central  Google Scholar 

  • Barbato C, Pezzola S, Caggiano C, Antonelli M, Frisone P, Ciotti MT, Ruberti F (2014) A lentiviral sponge for miR-101 regulates RanBP9 expression and amyloid precursor protein metabolism in hippocampal neurons. Front Cell Neurosci 8:37

    PubMed  PubMed Central  Google Scholar 

  • Bargiela S, Steward R, Mandy W (2016) The experiences of late-diagnosed women with autism spectrum conditions: an investigation of the female autism phenotype. J Autism Dev Disord 46(10):3281–3294

    PubMed  PubMed Central  Google Scholar 

  • Bian S, Hong J, Li Q, Schebelle L, Pollock A, Knauss JL, Garg V, Sun T (2013) MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex. Cell reports 3(5):1398–1406

    CAS  PubMed  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA (New York, N.Y.), 10(2), pp.185–191

  • Bossé G, Simard M (2010) A new twist in the microRNA pathway: Not Dicer but Argonaute is required for a microRNA production. Cell Res 20:735–737

    PubMed  Google Scholar 

  • Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, Kogan MD (2011) Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics 127(6):1034–1042

    PubMed  Google Scholar 

  • Bukhari S, Truesdell SS, Lee S, Kollu S, Classon A, Boukhali M, Jain E, Mortensen RD, Yanagiya A, Sadreyev RI, Haas W, Vasudevan S (2016) A specialized mechanism of translation mediated by FXR1a-associated microRNP in cellular quiescence. Mol Cell 61(5):760–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buller B, Chopp M, Ueno Y, Zhang L, Zhang R, Morris D, Zhang Y, Zhang Z (2012) Regulation of serum response factor by miRNA-200 and miRNA-9 modulates oligodendrocyte progenitor cell differentiation. Glia 60(12):1906–1914

    PubMed  PubMed Central  Google Scholar 

  • Busto GU, Guven-Ozkan T, Fulga TA, Van Vactor D, Davis RL (2015) microRNAs that promote or inhibit memory formation in Drosophila melanogaster. Genetics 200(2):569–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Wang L, Cheng Q, Sun X, Kang Q, Dai L, Zhou X, Song Z (2019) Changes in serum miRNA-let-7 level in children with attention deficit hyperactivity disorder treated by repetitive transcranial magnetic stimulation or atomoxetine: an exploratory trial. Psychiatry Res 274:189–194

    CAS  PubMed  Google Scholar 

  • Cath D, Hedderly T, Ludolph A, Stern J, Murphy T, Hartmann A, Czernecki V, Robertson M, Martino D, Munchau A, Rizzo R (2011) European clinical guidelines for Tourette Syndrome and other tic disorders. Part I: assessment. European Child & Adolescent Psychiatry 20(4), pp. 155–171

  • Cavaliere C, Cirillo G, Bianco MR, Adriani W, De Simone A, Leo D, Perrone-Capano C, Papa M (2012) Methylphenidate administration determines enduring changes in neuroglial network in rats. Eur Neuropsychopharmacol 22(1):53–63

    CAS  PubMed  Google Scholar 

  • Chaidez V, Hansen RL, Hertz-Picciotto I (2014) Gastrointestinal problems in children with autism, developmental delays or typical development. J Autism Dev Disord 44(5):1117–1127

    PubMed  PubMed Central  Google Scholar 

  • Chandley M, Crawford J, Szebeni A, Szebeni K, Ordway G (2015) NTRK2 expression levels are reduced in laser captured pyramidal neurons from the anterior cingulate cortex in males with autism spectrum disorder. Mol Autism 6:28. https://doi.org/10.1186/s13229-015-0023-2

  • Chang S-JE, Chang-Lin S, Chang DC, Chang CP, Lin S-L, Ying S-Y (2008) Repeat-associated microRNAs trigger fragile X mental retardation-like syndrome in Zebrafish. The Open Neuropsychopharmacology Journal 1:6–18

    Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao HT, Zoghbi HY, Rosenmund C (2007) MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron 56(1):58–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaste P, Betancur C, Gérard-Blanluet M, Bargiacchi A, Kuzbari S, Drunat S, Leboyer M, Bourgeron T, Delorme R (2012) High-functioning autism spectrum disorder and fragile X syndrome: report of two affected sisters. Molecular Autism 3(1):5

    PubMed  PubMed Central  Google Scholar 

  • Chen MH, Su TP, Chen YS, Hsu JW, Huang KL, Chang WH, Bai YM (2013) Asthma and attention-deficit/hyperactivity disorder: a nationwide population-based prospective cohort study. Journal of Child Psychology Psychiatry 54(11):1208–1214

    PubMed  Google Scholar 

  • Chen X, Jiang X-M, Zhao L-J, Sun L-L, Yan M-L, Tian Y, Zhang S, Duan M-J, Zhao H-M, Li, and W.-R., (2017) MicroRNA-195 prevents dendritic degeneration and neuron death in rats following chronic brain hypoperfusion. Cell death & disease 8:e2850

    CAS  Google Scholar 

  • Cheng Y, Chen T, Song J, Teng Z, Wang C, Wang S, Lu G, Feng T, Qi Q, Xi Q, Liu S, Hao L, Zhang Y (2020) Pituitary miRNAs target GHRHR splice variants to regulate GH synthesis by mediating different intracellular signalling pathways. RNA Biol 19:1–13

    Google Scholar 

  • Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S (2017) Fragile X syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr 43(1):39. https://doi.org/10.1186/s13052-017-0355-y

  • Cornejo J, Pedrini H, Machado-Lima A, Nunes F (2017) Down syndrome detection based on facial features using a geometric descriptor. Journal of Medical Imaging 4(04):1

    Google Scholar 

  • Cuman C, Van Sinderen M, Gantier MP, Rainczuk K, Sorby K, Rombauts L, Osianlis T, Dimitriadis E (2015) Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine 2(10):1528–1535

    PubMed  PubMed Central  Google Scholar 

  • Curatolo P, Ben-Ari Y, Bozzi Y, Catania MV, D'Angelo E, Mapelli L, Oberman LM, Rosenmund C, Cherubini E (2014) Synapses as therapeutic targets for autism spectrum disorders: an international symposium held in Pavia on July 4th, 2014. Front Cell Neurosci 8:309. https://doi.org/10.3389/fncel.2014.00309

  • D’Gama A, Pochareddy S, Li M, Jamuar S, Reiff R, Lam A, Sestan N, Walsh C (2015) Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 88(5):910–917

    PubMed  PubMed Central  Google Scholar 

  • Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N (2012) microRNA-9 regulates axon extension and branching by targetingMap1b in mouse cortical neurons. Nat Neurosci 15:697–699

    CAS  PubMed  Google Scholar 

  • Dalsgaard S, Ostergaard SD, Leckman JF, Mortensen PB, Pedersen MG (2015) Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet 385(9983):2190–2196

    PubMed  Google Scholar 

  • Darnell J, Van Driesche S, Zhang C, Hung K, Mele A, Fraser C, Stone E, Chen C, Fak J, Chi S, Licatalosi D, Richter J, Darnell R (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2):247–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dastidar SG, Narayanan S, Stifani S, D’Mello SR (2012) Transducin-like enhancer of Split-1 (TLE1) combines with Forkhead box protein G1 (FoxG1) to promote neuronal survival. J Biol Chem 287(18):14749–14759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dave V, Ngo T, Pernestig A, Tilevik D, Kant K, Nguyen T, Wolff A, Bang D (2018) MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Lab Invest 99(4):452–469

    PubMed  Google Scholar 

  • Dawson G, Jones E, Merkle K, Venema K, Lowy R, Faja S, Kamara D, Murias M, Greenson J, Winter J, Smith M, Rogers S, Webb S (2012) Early behavioral intervention is associated with normalized brain activity in young children with autism. J Am Acad Child Adolesc Psychiatry 51(11):1150–1159

    PubMed  PubMed Central  Google Scholar 

  • de Graaf G, Buckley F, Skotko B (2016) Estimation of the number of people with Down syndrome in the United States. Genet Med 19(4):439–447

    PubMed  Google Scholar 

  • Deng H, Le W, Xie W, Jankovic J (2006) Examination of the SLITRK1 gene in Caucasian patients with Tourette syndrome. Acta Neurol Scand 114(6):400–402

    CAS  PubMed  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    CAS  PubMed  Google Scholar 

  • Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R (2013) MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS ONE 8:e79467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC, McManus MT, Barres BA (2010) Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 65(5):597–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumaret AC, Rosset DJ (1993) Trisomie 21 et abandon. Enfants nés et remis en vue d'adoption à Paris [Trisomy 21 and abandonment. Infants born and placed for adoption in Paris]. Arch Fr Pediatr, 50(10), pp. 851–7

  • Eipper-Mains JE, Kiraly DD, Palakodeti D, Mains RE, Eipper BA, Graveley BR (2011) microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA 17:1529–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elton TS, Sansom SE, Martin MM (2010) Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biol 7(5):540–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532(1):1–12

    CAS  PubMed  Google Scholar 

  • Fabbrini G, Pasquini M, Aurilia C, Berardelli I, Breedveld G, Oostra BA, Bonifati V, Berardelli A (2007) A large Italian family with Gilles de la Tourette syndrome: clinical study and analysis of the SLITRK1 gene. Movement Disorders : Official Journal of the Movement Disorder Society 22(15):2229–2234

    Google Scholar 

  • Fasmer OB, Halmoy A, Oedegaard KJ, Haavik J (2011) Adult attention deficit hyperactivity disorder is associated with migraine headaches. Eur Arch Psychiatry Clin Neurosci 261(8):595–602

    PubMed  PubMed Central  Google Scholar 

  • Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, Shi H, Xu Y, Qu R, Chai R, Shao R, Jin L, He L, Sun X, Wang L (2015) MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 5:8689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Marler S, Altstein LL, Lee EB, Akers J, Sohl K, McLaughlin A, Hartnett K, Kille B, Mazurek M, Macklin EA, McDonnell E, Barstow M, Bauman ML, Margolis KG, Veenstra-VanderWeele J, Beversdorf DQ (2017) Psychophysiological associations with gastrointestinal symptomatology in autism spectrum disorder. Autism research : official journal of the International Society for Autism Research 10(2):276–288

    Google Scholar 

  • Frye RE, Wynne R, Rose S, Slattery J, Delhey L, Tippett M, Kahler SG, Bennuri SC, Melnyk S, Sequeira JM, Quadros EV (2017) Thyroid dysfunction in children with autism spectrum disorder is associated with folate receptor α autoimmune disorder. J Neuroendocrinol 29(3). https://doi.org/10.1111/jne.12461

  • Garbett K, Ebert P, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico A (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30(3):303–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillberg C, Lundstrom S, Fernell E, Nilsson G, Neville B (2017) Febrile seizures and epilepsy: association with autism and other neurodevelopmental disorders in the child and adolescent twin study in Sweden. Pediatr Neurol 74:80–86

    PubMed  Google Scholar 

  • Goff LA, Davila J, Swerdel MR, Moore JC, Cohen RI, Wu H, Sun YE, Hart RP (2009) Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PLoS ONE 4:e7192

    PubMed  PubMed Central  Google Scholar 

  • Green RM, Travers AM, Howe Y, McDougle CJ (2019) Women and Autism Spectrum Disorder: Diagnosis and Implications for Treatment of Adolescents and Adults. Curr Psychiatry Rep 21(4):22. https://doi.org/10.1007/s11920-019-1006-3

  • Griffiths MR, Neal JW, Fontaine M, Das T, Gasque P (2009) Complement factor H, a marker of self protects against experimental autoimmune encephalomyelitis. J Immunol 182(7):4368–4377

    CAS  PubMed  Google Scholar 

  • Grigoriou M, Tucker AS, Sharpe PT, Pachnis V (1998) Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development. Development 125:2063–2074

    CAS  PubMed  Google Scholar 

  • Halevy T, Czech C, Benvenisty N (2015) Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Reports 4(1):37–46

    CAS  PubMed  Google Scholar 

  • Hall S, Bobrow M, Marteau TM (2000) Psychological consequences for parents of false negative results on prenatal screening for Down’s syndrome: retrospective interview study. BMJ (Clinical research ed) 320(7232):407–412

    CAS  Google Scholar 

  • Hamed AM, Kauer AJ, Stevens HE (2015) Why the Diagnosis of Attention Deficit Hyperactivity Disorder Matters. Front Psychiatry 6:168. https://doi.org/10.3389/fpsyt.2015.00168

  • Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A 105(5):1516–1521

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Li HB, Li X, Zhou Y, Xia XB, Song WT (2018) MiR-124 promotes the growth of retinal ganglion cells derived from muller cells. Cell Physiol Biochem 45:973–983

    CAS  PubMed  Google Scholar 

  • Hicks SD, Ignacio C, Gentile K, Middleton FA (2016) Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 16:52

    PubMed  PubMed Central  Google Scholar 

  • Hicks SD, Carpenter RL, Wagner KE, Pauley R, Barros M, Tierney-Aves C, Barns S, Greene CD, Middleton FA (2020) Saliva MicroRNA differentiates children with autism from peers with typical and atypical development. J Am Acad Child Adolesc Psychiatry 59(2):296–308

    PubMed  Google Scholar 

  • Hirvikoski T, Mittendorfer-Rutz E, Boman M, Larsson H, Lichtenstein P, Bölte S (2016) Premature mortality in autism spectrum disorder. Br J Psychiatry 208(3):232–238

    PubMed  Google Scholar 

  • Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R, Zhuang W, Tang B, Xia K, Jiang H (2015) Investigation of gene regulatory networks associated with autism spectrum disorder based on MiRNA expression in China. PLoS ONE 10(6):e0129052

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Zhang Q, Chen X, Gu X, Wang M, Wu J (2019) A functional variant in SLC1A3 influences ADHD risk by disrupting a hsa-miR-3171 binding site: a two-stage association study. Genes Brain Behav 18(5):e12574

    PubMed  Google Scholar 

  • Huntley Z, Maltezos S, Williams C, Morinan A, Hammon A, Ball D, Marshall EJ, Keaney F, Young S, Bolton P, Glaser K, Howe-Forbes R, Kuntsi J, Xenitidis K, Murphy D, Asherson PJ (2012) Rates of undiagnosed attention deficit hyperactivity disorder in London drug and alcohol detoxification units. BMC Psychiatry 12:223. https://doi.org/10.1186/1471-244X-12-223

  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    CAS  PubMed  Google Scholar 

  • Inai A, Tochigi M, Kuwabara H, Nishimura F, Kato K, Eriguchi Y, Shimada T, Furukawa M, Kawamura Y, Sasaki T, Kakiuchi C, Kasai K, Kano Y (2015) Analysis of SLITRK1 in Japanese patients with Tourette syndrome using a next-generation sequencer. Psychiatr Genet 25:256–258

    PubMed  Google Scholar 

  • Ipsaro JJ, Joshua-Tor L (2015) From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat StructMol Biol 22:20–28

    CAS  Google Scholar 

  • Iqbal Z, Vandeweyer G, van der Voet M, Waryah AM, Zahoor MY, Besseling JA, Roca LT, Vulto-van Silfhout AT, Nijhof B, Kramer JM, Van der Aa N, Ansar M, Peeters H, Helsmoortel C, Gilissen C, Vissers LE, Veltman JA, de Brouwer AP, Frank Kooy R, Riazuddin S, Schenck A, van Bokhoven H, Rooms L (2013) Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Hum Mol Genet 22(10):1960–1970

    CAS  PubMed  Google Scholar 

  • Izzo A, Manco R, de Cristofaro T, Bonfiglio F, Cicatiello R, Mollo N, De Martino M, Genesio R, Zannini M, Conti A, Nitsch L (2017) Overexpression of chromosome 21 miRNAs may affect mitochondrial function in the hearts of Down syndrome fetuses. Int J Genomics 2017:8737649

    PubMed  PubMed Central  Google Scholar 

  • Jin P, Alisch RS, Warren ST (2004a) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6:1048–1053

    CAS  PubMed  Google Scholar 

  • Jin P, Zarnescu D, Ceman S, Nakamoto M, Mowrey J, Jongens T, Nelson D, Moses K, Warren S (2004b) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7(2):113–117

    CAS  PubMed  Google Scholar 

  • Jones K, Luo Y, Dukes-Rimsky L, Srivastava D, Koul-Tewari R, Russell T, Shapiro L, Srivastava A, Penzes P (2018) Neurodevelopmental disorder-associated ZBTB20 gene variants affect dendritic and synaptic structure. PLoS ONE 13(10):e0203760

    PubMed  PubMed Central  Google Scholar 

  • Ka M, Chopra DA, Dravid SM, Kim WY (2016) Essential Roles for ARID1B in dendritic arborization and spine morphology of developing pyramidal neurons. J Neurosci 36:2723–2742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandemir H, Erdal ME, Selek S, Ay Öİ, Karababa IF, Kandemir SB, Ay ME, Yılmaz ŞG, Bayazıt H, Taşdelen B (2014) Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neurosci Lett 580:158–162

    CAS  PubMed  Google Scholar 

  • Karaca E, Aykut A, Ertürk B, Durmaz B, Güler A, Büke B, Yeniel AÖ, Ergenoğlu AM, Özkınay F, Özeren M, Kazandı M, Akercan F, Sağol S, Gündüz C, Çoğulu Ö (2018) MicroRNA expression profile in the prenatal amniotic fluid samples of pregnant women with Down syndrome. Balkan medical journal 35(2):163–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karagiannidis I, Rizzo R, Tarnok Z, Wolanczyk T, Hebebrand J, Nöthen MM, Lehmkuhl G, Farkas L, Nagy P, Barta C, Szymanska U, Panteloglou G, Miranda DM, Feng Y, Sandor P, Barr C, Paschou P (2012) Replication of association between a SLITRK1 haplotype and Tourette syndrome in a large sample of families. Mol Psychiatry 17:665–668

    CAS  PubMed  Google Scholar 

  • Karlsson R-M, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34(6):1578–1589

    CAS  PubMed  Google Scholar 

  • Karlsson R-M, Heilig M, Holmes A (2008) Loss of glutamate transporter GLAST (EAAT1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and mGlu2/3 agonist. Biol Psychiatry 64(9):810–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamata T, Tomari Y (2010) Making RISC Trends BiochemSci 35:368–376

    CAS  Google Scholar 

  • Keck-Wherley J, Grover D, Bhattacharyya S, Xu X, Holman D, Lombardini ED, Verma R, Biswas R, Galdzicki Z (2011) Abnormal microRNA expression in Ts65Dn hippocampus and whole blood: contributions to Down syndrome phenotypes. Dev Neurosci 33(5):451–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kentrou V, de Veld D, Mataw K, Begeer S (2018) Delayed autism spectrum disorder recognition in children and adolescents previously diagnosed with attention-deficit/hyperactivity disorder. Autism 23(4):1065–1072

    PubMed  PubMed Central  Google Scholar 

  • Kichukova TM, Popov NT, Ivanov IS, Vachev TI (2017) Profiling of circulating serum microRNAs in children with autism spectrum disorder using stem-loop qRT-PCR assay. Folia Med 59:43–52

    CAS  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotey S, Ertel K, Whitcomb B (2014) Co-occurrence of autism and asthma in a nationally-representative sample of children in the United States. J Autism Dev Disord 44(12):3083–3088

    PubMed  Google Scholar 

  • Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annual Rev Neurosci 32:127–147

    CAS  Google Scholar 

  • Kremer EA, Gaur N, Lee MA, Engmann O, Bohacek J, Mansuy JI (2018) Interplay between TETs and microRNAs in the adult brain for memory formation. Sci Rep 8:1678

    PubMed  PubMed Central  Google Scholar 

  • Kurt S, Fisher SE, Ehret G (2012) Foxp2 mutations impair auditory-motor association learning. PLoS ONE 7(3):e33130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leedham A, Thompson A, Smith R, Freeth M (2019) ‘I was exhausted trying to figure it out’: the experiences of females receiving an autism diagnosis in middle to late adulthood. Autism 24(1):135–146

    PubMed  Google Scholar 

  • Lehnhardt F, Falter C, Gawronski A, Pfeiffer K, Tepest R, Franklin J, Vogeley K (2015) Sex-related cognitive profile in autism spectrum disorders diagnosed late in life: implications for the female autistic phenotype. J Autism Dev Disord 46(1):139–154

    Google Scholar 

  • Lendvai B, Kassai F, Szajli A, Nemethy Z (2013) Alpha 7 Nicotinic acetylcholine receptors and their role in cognition. Brain Res Bull 93:86–96

    CAS  PubMed  Google Scholar 

  • Letzen BS, Liu C, Thakor NV, Gearhart JD, All AH, Kerr CL (2010) MicroRNA expression profiling of oligodendrocyte differentiation from human embryonic stem cells. PLoS ONE 5:e10480

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Han Y, Dy ABC, Hagerman RJ (2017) The gut microbiota and autism spectrum disorders. Front Cell Neurosci 11:120

    PubMed  PubMed Central  Google Scholar 

  • Li YY, Alexandrov PN, Pogue AI, Zhao Y, Bhattacharjee S, Lukiw WJ (2012) miRNA-155 upregulation and complement factor H deficits in Down’s syndrome. NeuroReport 23(3):168–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J, Kim D, Lee D, Han J, Chung J, Ahn H, Lee S, Lim D, Lee Y, Park S, Ryu H (2015a) Genome-wide microRNA expression profiling in placentas of fetuses with Down syndrome. Placenta 36(3):322–328

    CAS  PubMed  Google Scholar 

  • Lim J, Lee D, Kim S, Kim H, Kim K, Han Y, Kim M, Choi J, Kim M, Ryu H, Park S (2015b) MicroRNAs as potential biomarkers for noninvasive detection of fetal trisomy 21. J Assist Reprod Genet 32(5):827–837

    PubMed  PubMed Central  Google Scholar 

  • Lin H, Sui W, Li W, Tan Q, Chen J, Lin X, Guo H, Ou M, Xue W, Zhang R, Dai Y (2016) Integrated microRNA and protein expression analysis reveals novel microRNA regulation of targets in fetal down syndrome. Mol Med Rep 14(5):4109–4118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Chang S, Ying S (2006) First in vivo evidence of microRNA-induced fragile X mental retardation syndrome. Mol Psychiatry 11(7):616–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SL (2015) ‘microRNAs and Fragile X Syndrome’, in Santulli G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham, pp. 107–121

  • Liodis P, Myrto D, Marirena G, Cynthia AA, Yuchio Y, Vassilis P (2007) Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci 27:3078–3089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lippi G, Fernandes CC, Ewell LA, John D, Romoli B, Curia G, Taylor SR, Frady EP, Jensen AB, Liu JC (2016) MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks. Neuron 92:1337–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Wan RP, Tang LJ, Liu SJ, Li HJ, Zhao QH, Liao WP, Sun XF, Yi YH, Long YS (2015a) A microRNA profile in Fmr1 knockout mice reveals microRNA expression alterations with possible roles in fragile X syndrome. Mol Neurobiol 51(3):1053–1063

    CAS  PubMed  Google Scholar 

  • Liu Z, Wang J, Li G, Wang HW (2015b) Structure of precursor microRNA’s terminal loop regulates human Dicer’s dicing activity by switching DExH/D domain. Protein Cell 6(3):185–193

    CAS  PubMed  Google Scholar 

  • Lou S, Carstensen K, Petersen O, Nielsen C, Hvidman L, Lanther M, Vogel I (2018) Termination of pregnancy following a prenatal diagnosis of Down syndrome: a qualitative study of the decision-making process of pregnant couples. Acta Obstet Gynecol Scand 97(10):1228–1236

    PubMed  Google Scholar 

  • Lu HE, Yang YC, Chen SM, Su HL, Huang PC, Tsai MS, Wang TH, Tseng CP, Hwang SM (2013) Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells. Exp Cell Res 319(4):498–505

    CAS  PubMed  Google Scholar 

  • Lui PY, Jin DY, Stevenson NJ (2015) MicroRNA: master controllers of intracellular signaling pathways. Cell Mol Life Sci 72:3531–3542

    CAS  PubMed  Google Scholar 

  • Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M, DiRienzo M, Christensen DL, Wiggins LD, Pettygrove S, Andrews JG, Lopez M, Hudson A, Baroud T, Schwenk Y, White T, Rosenberg CR, Lee LC, Harrington RA, Huston M, Hewitt A, Esler A, Hall-Lande J, Poynter JN, Hallas-Muchow L, Constantino JN, Fitzgerald RT, Zahorodny W, Shenouda J, Daniels JL, Warren Z, Vehorn A, Salinas A, Durkin MS, Dietz PM (2020) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 Sites, United States, 2016. MMWR Surveill Summ., 69(SS-4), pp. 1–12

  • Mak H, Yung J, Weinreb R, Ng S, Cao X, Ho T, Ng T, Chu W, Yung W, Choy K, Wang C, Lee T, Leung C (2020) MicroRNA-19a-PTEN axis is involved in the developmental decline of axon regenerative capacity in retinal ganglion cells. Molecular Therapy - Nucleic Acids 21:251–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marler K, Suetterlin P, Dopplapudi A, Rubikaite A, Adnan J, Maiorano N, Lowe A, Thompson I, Pathania M, Bordey A, Fulga T, Van Vactor D, Hindges R, Drescher U (2014) BDNF promotes axon branching of retinal ganglion cells via miRNA-132 and p250GAP. J Neurosci 34(3):969–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marrale M, Albanese NN, Calì F, Romano V (2014) Assessing the impact of copy number variants on miRNA genes in autism by Monte Carlo simulation. PLoS ONE 9:e90947

    PubMed  PubMed Central  Google Scholar 

  • McPhilemy C, Dillenburger K (2013) Parents’ experiences of applied behaviour analysis (ABA)-based interventions for children diagnosed with autistic spectrum disorder. British Journal of Special Education 40(4):154–161

    Google Scholar 

  • Miranda DM, Wigg K, Kabia EM, Feng Y, Sandor P, Barr CL (2009) Association of SLITRK1 to Gilles de la Tourette syndrome. Am J Med Genet B Neuropsychiatr Genet 150B:483–486

    CAS  PubMed  Google Scholar 

  • Mol Debes N, Hjalgrim H, Skov L (2008) Limited knowledge of Tourette syndrome causes delay in diagnosis. Neuropediatrics 39(02):101–105

    CAS  PubMed  Google Scholar 

  • Mor M, Nardone S, Sams DS, Elliott E (2015) Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 6:46. https://doi.org/10.1186/s13229-015-0040-1

  • Nakata M, Kimura R, Funabiki Y, Awaya T, Murai T, Hagiwara M (2019) MicroRNA profiling in adults with high-functioning autism spectrum disorder. Mol Brain 12:82. https://doi.org/10.1186/s13041-019-0508-6

  • Németh N, Kovács-Nagy R, Székely A, Sasvári-Székely M, Rónai Z (2013) Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS ONE 8(12):e84207

    PubMed  PubMed Central  Google Scholar 

  • Neo W, Yap K, Lee S, Looi L, Khandelia P, Neo S, Makeyev E, Su I (2014) MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression. J Biol Chem 289(30):20788–20801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novotny M, Valis M, Klimova B (2018) Tourette Syndrome: A Mini-Review. Front Neurol 9:139. https://doi.org/10.3389/fneur.2018.00139

  • Nuzziello N, Craig F, Simone M, Consiglio A, Licciulli F, Margari L, Grillo G, Liuni S, Liguori M (2019) Integrated analysis of microRNA and mRNA expression profiles: an attempt to disentangle the complex interaction network in attention deficit hyperactivity disorder. Brain sciences 9(10):288

    CAS  PubMed Central  Google Scholar 

  • O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    CAS  Google Scholar 

  • O’Neill S, Rajendran K, Halperin J (2012) More than child’s play: the potential benefits of play-based interventions for young children with ADHD. Expert Rev Neurother 12(10):1165–1167

    PubMed  Google Scholar 

  • O’Roak B, Morgan T, Fishman D, Saus E, Alonso P, Gratacòs M, Estivill X, Teltsh O, Kohn Y, Kidd K, Cho J, Lifton R, State M (2010) Additional support for the association of SLITRK1 var321 and Tourette syndrome. Mol Psychiatry 15(5):447–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olusanya BO, de Vries PJ (2018) African Consortium of the Global Research on Developmental Disabilities Collaborators. Nurturing care for children with developmental disabilities: a moral imperative for sub-Saharan Africa. Lancet Child Adolesc Health 2:772–774

    PubMed  Google Scholar 

  • Ornoy A, Spivak A (2019) Cost effectiveness of optimal treatment of ADHD in Israel: a suggestion for national policy. Health Econ Rev 9:24. https://doi.org/10.1186/s13561-019-0240-z

  • Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    PubMed  Google Scholar 

  • Otaegi G, Pollock A, Hong J, Sun T (2011) MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 31:809–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkul Y, Taheri S, Bayram K, Sener E, Mehmetbeyoglu E, Öztop D, Aybuga F, Tufan E, Bayram A, Dolu N, Zararsiz G, Kianmehr L, Beyaz F, Doganyigit Z, Cuzin F, Rassoulzadegan M (2020) A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep, 10(1)

  • Pagliaroli L, Vereczkei A, Padmanabhuni SS, Paschou P, Barta C (2017) T35 - Microrna regulation of candidate genes for Tourette syndrome. Eur Neuropsychopharmacol 27(3):S453–S454

    Google Scholar 

  • Pagliaroli L, Vereczkei A, Padmanabhuni SS, Tarnok Z, Farkas L, Nagy P, Rizzo R, Wolanczyk T, Szymanska U, Kapisyzi M, Basha E, Koumoula A, Androutsos C, Tsironi V, Karagiannidis I, Paschou P, Barta C (2020) Association of genetic variation in the 3′UTR of LHX6, IMMP2L, and AADAC with Tourette syndrome. Front Neurol 11:803. https://doi.org/10.3389/fneur.2020.00803

  • Parisi P, Verrotti A, Paolino MC, Ferretti A, Raucci U, Moavero R, Curatolo P (2014) Headache and attention deficit and hyperactivity disorder in children: common condition with complex relation and disabling consequences. Epilepsy Behav 32:72–75

    PubMed  Google Scholar 

  • Park JH, Shin C (2014) MicroRNA-directed cleavage of targets: mechanism and experimental approaches. BMB Rep 47(8):417–423

    PubMed  PubMed Central  Google Scholar 

  • Parkin GM, Udawela M, Gibbons A, Dean B (2018) Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 8(2):51–63

    PubMed  PubMed Central  Google Scholar 

  • Patel C, Cooper-Charles L, McMullan DJ, Walker JM, Davison V, Morton J (2011) Translocation breakpoint at 7q31 associated with tics: further evidence for IMMP2L as a candidate gene for Tourette syndrome. Eur J Hum Genet 19:634–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Li N, Ng YK, Zhang J, Meier F, Theis FJ, Merkenschlager M, Chen W, Wurst W, Prakash N (2012) A unilateral negative feedback loop between miR-200 microRNAs and Sox2/E2F3 controls neural progenitor cell-cycle exit and differentiation. The Journal of Neuroscience: the official journal of the Society for Neuroscience 32(38):13292–13308

    CAS  Google Scholar 

  • Peng Y, Croce C (2016) The role of MicroRNAs in human cancer. Sig Transduct Target Ther 1:15004

    Google Scholar 

  • Peprah E (2011) Fragile X syndrome: the FMR1 CGG repeat distribution among world populations. Ann Hum Genet 76(2):178–191

    PubMed  PubMed Central  Google Scholar 

  • Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, Thiruvahindrapuram B, Xu X, Ziman R, Wang Z, Vorstman JA, Thompson A, Regan R, Pilorge M, Pellecchia G, Pagnamenta AT, Oliveira B, Marshall CR, Magalhaes TR, Lowe JK, Scherer SW (2014) Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 94(5):677–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plessen KJ, Ravi B, Bradley SP (2009) Imaging evidence for anatomical disturbances and neuroplastic compensation in persons with Tourette syndrome. J Psychosomat Res 67:559–573

    Google Scholar 

  • Popov N, Madjirova N, Minkov I, Vachev T (2012) Micro RNA HSA-486-3P gene expression profiling in the whole blood of patients with autism. Biotechnol Biotechnol Equip 26(6):3385–3388

    CAS  Google Scholar 

  • Putkonen N, Laiho A, Ethell D, Pursiheimo J, Anttonen AK, Pitkonen J, Gentile AM, de Diego-Otero Y, Castrén ML (2020) Urine microRNA profiling displays miR-125a dysregulation in children with fragile X syndrome. Cells 9(2):289

    CAS  PubMed Central  Google Scholar 

  • Radhakrishnan B, Anand AP, A. (2016) Role of miRNA-9 in brain development. J Exp Neurosci 10:101–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ragusa M, Majorana A, Banelli B, Barbagallo D, Statello L, Casciano I, Guglielmino MR, Duro LR, Scalia M, Magro G, Di Pietro C, Romani M, Purrello M (2010) MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. J Mol Med (Berl) 88(10):1041–1053

    CAS  Google Scholar 

  • Ramaiah M, Tan K, Plank TM, Song HW, Dumdie JN, Jones S, Shum EY, Sheridan SD, Peterson KJ, Gromoll J, Haggarty SJ, Cook-Andersen H, Wilkinson MF (2019) A microRNA cluster in the Fragile-X region expressed during spermatogenesis targets FMR1. EMBO Rep 20(2):e46566

    PubMed  Google Scholar 

  • Randall M, Egberts K, Samtani A, Scholten R, Hooft L, Livingstone N, Sterling-Levis K, Woolfenden S, Williams K (2018) Diagnostic tests for autism spectrum disorder (ASD) in preschool children. Cochrane Database of Systematic Reviews, 7(7), CD009044

  • Rathje M, Waxman H, Benoit M, Tammineni P, Leu C, Loebrich S, Nedivi E (2019) Genetic variants in the bipolar disorder risk locus SYNE1 that affect CPG2 expression and protein function. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0314-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Reilly C, Atkinson P, Das KB, Chin RF, Aylett SE, Burch V, Neville BG (2014) Neurobehavioral comorbidities in children with active epilepsy: a population-based study. Pediatrics 133(6):e1586–e1593

    PubMed  Google Scholar 

  • Rizzo R, Ragusa M, Barbagallo C, Sammito M, Gulisano M, Calì PV, Pappalardo C, Barchitta M, Granata M, Condorelli AG, Barbagallo D, Scalia M, Agodi A, Di Pietro C, Purrello M (2015) Circulating miRNAs profiles in Tourette syndrome: molecular data and clinical implications. Mol Brain 8:44

    PubMed  PubMed Central  Google Scholar 

  • Ronzoni L, Tagliaferri F, Tucci A, Baccarin M, Esposito S, Milani D (2016) Interstitial 6q25 microdeletion syndrome: ARID1B is the key gene. Am J Med Genet A, 170a, pp. 1257–1261

  • Ryan B, Joilin G, Williams JM (2015) Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front Mol Neurosci 8:4

    PubMed  PubMed Central  Google Scholar 

  • Sainz J, Serrano R, Borrero C, Turmo E (2012) First trimester contingent test as a screening method for Down’s syndrome. A prospective study in the general population. The Journal of Maternal-Fetal & Neonatal Medicine 25(11), pp. 2221–2224

  • Sánchez-Mora C, Ramos-Quiroga JA, Garcia-Martínez I, Fernàndez-Castillo N, Bosch R, Richarte V, Palomar G, Nogueira M, Corrales M, Daigre C, Martínez-Luna N, Grau-Lopez L, Toma C, Cormand B, Roncero C, Casas M, Ribasés M (2013) Evaluation of single nucleotide polymorphisms in the miR-183-96-182 cluster in adulthood attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs). Eur Neuropsychopharmacol 23(11):1463–1473

    PubMed  Google Scholar 

  • Santorum M, Wright D, Syngelaki A, Karagioti N, Nicolaides K (2017) Accuracy of first-trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet Gynecol 49(6):714–720

    CAS  PubMed  Google Scholar 

  • Santra M, Zhang Z, Yang J, Santra S, Santra S, Chopp M, Morris D (2014) Thymosin β4 uUp-regulation of microRNA-146a promotes oligodendrocyte differentiation and suppression of the toll-like proinflammatory pathway. J Biol Chem 289(28):19508–19518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarachana T, Zhou R, Chen G, Manji H, Hu V (2010) Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Medicine 2(4):23

    PubMed  PubMed Central  Google Scholar 

  • Schendel DE, Overgaard M, Christensen J, Hjort L, Jørgensen M, Vestergaard M, Parner ET (2016) Association of psychiatric and neurologic comorbidity with mortality among persons with autism spectrum disorder in a Danish population. JAMA Pediatr 170(3):243–250

    PubMed  Google Scholar 

  • Schröder J, Ansaloni S, Schilling M, Liu T, Radke J, Jaedicke M, Schjeide B-MM, Mashychev A, Tegeler C, Radbruch H (2014) MicroRNA-138 is a potential regulator of memory performance in humans. Front Hum Neurosci 8:501

    PubMed  PubMed Central  Google Scholar 

  • Sehovic E, Spahic L, Smajlovic-Skenderagic L, Pistoljevic N, Dzanko E, Hajdarpasic A (2020) Identification of developmental disorders including autism spectrum disorder using salivary miRNAs in children from Bosnia and Herzegovina. PLoS ONE 15(4):e0232351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaham L, Vendramini E, Ge Y, Goren Y, Birger Y, Tijssen MR, McNulty M, Geron I, Schwartzman O, Goldberg L, Chou ST, Pitman H, Weiss MJ, Michaeli S, Sredni B, Göttgens B, Crispino JD, Taub JW, Izraeli S (2015) MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome. Blood 125(8):1292–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy A, Danial M, Blelloch RH (2015) Let-7 and miR-125 cooperate to prime progenitors for astrogliogenesis. EMBO J 34:1180–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi WL, Liu ZZ, Wang HD, Wu D, Zhang H, Xiao H, Chu Y, Hou QF, Liao SX (2016) Integrated miRNA and mRNA expression profiling in fetal hippocampus with Down syndrome. J Biomed Sci 23:48

    PubMed  PubMed Central  Google Scholar 

  • Shilon Y, Pollak Y, Benarroch F, Gross-Tsur V (2008) Factors influencing diagnosis delay in children with Tourette syndrome. Eur J Paediatr Neurol 12(5):398–400

    PubMed  Google Scholar 

  • Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C (2009) A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siew WH, Tan KL, Babaei MA, Cheah PS, Ling KH (2013) MicroRNAs and intellectual disability (ID) in Down syndrome, X-linked ID, and fragile X syndrome. Front Cell Neurosci 7:41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simionescu A, Stanescu A (2020) Missed Down syndrome cases after first trimester false-negative screening—lessons to be learned. Medicina 56(4):199

    PubMed Central  Google Scholar 

  • Simonsen T, Sørensen S, Ekelund C, Jørgensen F (2013) Prenatal characteristics of false negative cases from first-trimester screening of Down syndrome (trisomy 21). Prenat Diagn 33(4):400–402

    PubMed  Google Scholar 

  • Sinkus ML, Graw S, Freedman R, Ross RG, Lester HA, Leonard S (2015) The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology 96(Pt B):274–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith A, Kenny PJ (2018) MicroRNAs regulate synaptic plasticity underlying drug addiction. Genes Brain Behav 17(3):e12424

    CAS  PubMed  Google Scholar 

  • Smith E, Hokstad S, Næss K (2020) Children with Down syndrome can benefit from language interventions: results from a systematic review and meta-analysis. J Commun Disord 85:105992

    PubMed  Google Scholar 

  • Smith M (2017) Hyperactive around the world? The History of ADHD in Global Perspective. Soc Hist Med, p.hkw127

  • Snyder M, Simmons L, Kitzman J, Coe B, Henson J, Daza R, Eichler E, Shendure J, Gammill H (2015) Copy-number variation and false positive prenatal aneuploidy screening results. N Engl J Med 372(17):1639–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon L, Peltz L (2008) Separation, autism, and residential treatment. Journal of the Canadian Academy of Child and Adolescent Psychiatry = Journal de l'Academie canadienne de psychiatrie de l'enfant et de l'adolescent, 17(1), pp. 26–28

  • Spratt P, Ben-Shalom R, Keeshen C, Burke K, Clarkson R, Sanders S, Bender K (2019) The autism-associated gene Scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron 103(4):673-685.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastav S, Walitza S, Grünblatt E (2018) Emerging role of miRNA in attention deficit hyperactivity disorder: a systematic review. Atten Defic Hyperact Disord 10(1):49–63

    PubMed  Google Scholar 

  • Stamova B, Ander B, Barger N, Sharp F, Schumann C (2015) Specific regional and age-related small noncoding RNA expression patterns within superior temporal gyrus of typical human brains are less distinct in autism brains. J Child Neurol 30(14):1930–1946

    PubMed  PubMed Central  Google Scholar 

  • Steeves TD, Fox SH (2008) Neurobiological basis of serotonin-dopamine antagonists in the treatment of Gilles de la Tourette syndrome. Prog Brain Res 172:495–513

    CAS  PubMed  Google Scholar 

  • Sullivan JC, Miller LJ, Nielsen DM, Schoen SA (2014a) The presence of migraines and its association with sensory hyperreactivity and anxiety symptomatology in children with autism spectrum disorder. Autism 18(6):743–747

    PubMed  Google Scholar 

  • Sullivan K, Stone W, Dawson G (2014b) Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder. Res Dev Disabil 35(11):2921–2932

    PubMed  PubMed Central  Google Scholar 

  • Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21(6):644–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G, Gudsnuk K, Kuo S, Cotrina M, Rosoklija G, Sosunov A, Sonders M, Kanter E, Castagna C, Yamamoto A, Yue Z, Arancio O, Peterson B, Champagne F, Dwork A, Goldman J, Sulzer D (2014) Loss of mTOR-Dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tepper JM, Abercrombie ED, Bolam JP (2007) Basal ganglia macrocircuits. Progr. Brain Res 160:3–7

    CAS  Google Scholar 

  • Thapar A, Cooper M, Eyre O, Langley K (2013) What have we learnt about the causes of ADHD? J Child Psychol Psychiatry 54(1):3–16

    PubMed  PubMed Central  Google Scholar 

  • Tian T, Zhang Y, Wu T, Yang L, Chen C, Li N, Li Y, Xu S, Fu Z, Cui X, Ji C, Chi X, Tong M, Chen R, Hong Q, Hu Y (2019) miRNA profiling in the hippocampus of attention-deficit/hyperactivity disorder rats. J Cell Biochem 120(3):3621–3629

    CAS  PubMed  Google Scholar 

  • Tollånes MC, Wilcox AJ, Stoltenberg C, Lie RT, Moster D (2016) Neurodevelopmental disorders or early death in siblings of children with cerebral palsy. Pediatrics 138(2):e20160269

    PubMed  PubMed Central  Google Scholar 

  • Toma C, Torrico B, Hervas A, Salgado M, Rueda I, Valdes-Mas R, Buitelaar JK, Rommelse N, Franke B, Freitag C (2015) Common and rare variants of microRNA genes in autism spectrum disorders. The World Journal of Biological Psychiatry 16:376–386

    PubMed  Google Scholar 

  • Tossell K, Andreae LC, Cudmore C, Lang E, Muthukrishnan U, Lumsden A, Gilthorpe JD, Irving C (2011) Lrrn1 is required for formation of the midbrain-hindbrain boundary and organiser through regulation of affinity differences between midbrain and hindbrain cells in chick. Dev Biol 352:341–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trompeter H-I, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Muller HW, Wernet P (2011) MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS ONE 6:e16138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truesdell S, Mortensen RD, Seo M, Schroeder JC, Lee J, Letonqueze O, Vasudevan S (2012) MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Scientific Reports 2:842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turic D, Langley K, Williams H, Norton N, Williams NM, Moskvina V, Van den Bree MB, Owen MJ, Thapar A, O’Donovan MC (2005) A family based study implicates solute carrier family 1-member 3 (SLC1A3) gene in attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1461–1466

    CAS  PubMed  Google Scholar 

  • Vaccaro T, Sorrentino J, Salvador S, Veit T, Souza D, de Almeida R (2018) Alterations in the microRNA of the blood of autism spectrum disorder patients: effects on epigenetic regulation and potential biomarkers. Behav Sci 8(8):75

    PubMed Central  Google Scholar 

  • Vaishnavi V, Manikandan M, Tiwary BK, Munirajan AK (2013) Insights on the functional impact of microRNAs present in autism-associated copy number variants. PLoS ONE 8:e56781

    PubMed  PubMed Central  Google Scholar 

  • Vasu MM, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, Wakuda T, Iwata K, Tsujii M, Sugiyama T, Mori N (2014) Serum microRNA profiles in children with autism. Molecular Autism 5(1):40

    Google Scholar 

  • Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:1105–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85:1713–1720

    CAS  PubMed  Google Scholar 

  • Wallace TL, Porter RHP (2011) Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol 82:891–903

    CAS  PubMed  Google Scholar 

  • Wang JZ, Gao X, Wang ZH (2014) The physiology and pathology of microtubule-associated protein tau. Essays Biochem 56:111–123

    PubMed  Google Scholar 

  • Wang T, Bray SM, Warren ST (2012) New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev 22:256–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tan L, Lu Y, Peng J, Zhu Y, Zhang Y, Sun Z (2015) MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha. FEBS Lett 589:726–729

    CAS  PubMed  Google Scholar 

  • Weaver L, Rostain AL, Mace W, Akhtar U, Moss E, O’Reardon JP (2012) Transcranial magnetic stimulation (TMS) in the treatment of attention-deficit/hyperactivity disorder in adolescents and young adults: a pilot study. J ECT 28(2):98–103

    PubMed  Google Scholar 

  • Wiechec M, Nocun A, Knafel A, Wiercinska E, Sonek J, Rozmus-Warcholinska W, Orzechowski M, Stettner D, Plevak P (2017) Combined screening test for trisomy 21—is it as efficient as we believe? J Perinat Med, 45(2)

  • Wilens T, Spencer T (2010) Understanding attention-deficit/hyperactivity disorder from childhood to adulthood. Postgrad Med 122(5):97–109

    PubMed  PubMed Central  Google Scholar 

  • Wong SS, Ritner C, Ramachandran S, Aurigui J, Pitt C, Chandra P, Ling VB, Yabut O, Bernstein HS (2012) miR-125b promotes early germ layer specification through Lin28/let-7d and preferential differentiation of mesoderm in human embryonic stem cells. PLoS ONE 7(4):e36121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Morris J (2013) Trends in maternal age distribution and the live birth prevalence of Down’s syndrome in England and Wales: 1938–2010. Eur J Hum Genet 21:943–947

    PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhao Q, Zhu X, Peng M, Jia C, Wu W, Zheng J, Wu XZ (2010) A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol 20(6):1042–1054

    CAS  PubMed  Google Scholar 

  • Wu LH, Cheng W, Yu M, He BM, Sun H, Chen Q, Dong YW, Shao XT, Cai QQ, Peng M, Wu XZ (2017) Nr3C1-Bhlhb2 axis dysregulation is involved in the development of attention deficit hyperactivity. Mol Neurobiol 54(2):1196–1212

    CAS  PubMed  Google Scholar 

  • Wu LH, Peng M, Yu M, Zhao QL, Li C, Jin YT, Jiang Y, Chen ZY, Deng NH, Sun H, Wu XZ (2015b) Circulating microRNA Let-7d in attention-deficit/hyperactivity disorder. Neuromolecular Med 17(2):137–146

    CAS  PubMed  Google Scholar 

  • Wu Y, Parikshak N, Belgard T, Geschwind D (2016) Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat Neurosci 19(11):1463–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, San Lucas A, Wang Z, Liu Y (2014) Identifying microRNA targets in different gene regions. BMC Bioinformatics 15(Suppl. 7):S4

    PubMed  PubMed Central  Google Scholar 

  • Xu X, Yan Q, Wang Y, Dong X (2017) NTN4 is associated with breast cancer metastasis via regulation of EMT-related biomarkers. Oncol Rep 37:449–457

    PubMed  Google Scholar 

  • Xu Y, Li W, Liu X, Chen H, Tan K, Chen Y, Tu Z, Dai Y (2013a) Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome. Gene 533(2):278–286

    Google Scholar 

  • Xu Y, Li W, Liu X, Ma H, Tu Z, Dai Y (2013b) Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses. Int J Mol Med 32(5):1115–1125

    CAS  PubMed  Google Scholar 

  • Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D (2009) The Bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5(4):e1000444

    PubMed  PubMed Central  Google Scholar 

  • Yasmeen S, Melchior L, Bertelsen B, Skov L, Debes N, Tümer Z (2013) Sequence analysis of SLITRK1 for var321 in Danish patients with Tourette syndrome and review of the literature. Psychiatr Genet 23(3):130–133

    CAS  PubMed  Google Scholar 

  • Yasui DH, Scoles HA, Horike S, Meguro-Horike M, Dunaway KW, Schroeder DI, LaSalle JM (2011) 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum Mol Gen 20:4311–4323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye C, Hu Z, Wu E, Yang X, Buford UJ, Guo Z, Saveanu RV (2016) Two SNAP-25 genetic variants in the binding site of multiple microRNAs and susceptibility of ADHD: A meta-analysis. J Psychiatr Res 81:56–62

    PubMed  Google Scholar 

  • Yi YH, Sun XS, Qin JM, Zhao QH, Liao WP, Long YS (2010) Experimental identification of microRNA targets on the 3′ untranslated region of human FMR1 gene. J Neurosci Methods 190:34–38

    CAS  PubMed  Google Scholar 

  • Young H, Oreve M, Speranza M (2018) Clinical characteristics and problems diagnosing autism spectrum disorder in girls. Arch Pediatr 25(6):399–403

    CAS  PubMed  Google Scholar 

  • Yu D, Jiao X, Cao T, Huang F (2018) Serum miRNA expression profiling reveals miR-486-3p may play a significant role in the development of autism by targeting ARID1B. NeuroReport 29(17):1431–1436

    CAS  PubMed  Google Scholar 

  • Yin S, Yu Y, Reed R (2015) Primary microRNA processing is functionally coupled to RNAP II transcription in vitro. Sci Rep 5:11992

    PubMed  PubMed Central  Google Scholar 

  • Yu Q, Li E, Li L, Liang W (2020) Efficacy of interventions based on applied behavior analysis for autism spectrum disorder: a meta-analysis. Psychiatry Investigation 17(5):432–443

    PubMed  PubMed Central  Google Scholar 

  • Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, Zheng H, Yan W (2016) Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 143(4):635–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zadehbagheri F, Hosseini E, Bagheri-Hosseinabadi Z, Rekabdarkolaee HM, Sadeghi I (2019) Profiling of miRNAs in serum of children with attention-deficit hyperactivity disorder shows significant alterations. J Psychiatr Res 109:185–192

    PubMed  Google Scholar 

  • Zbucka-Kretowska M, Niemira M, Paczkowska-Abdulsalam M, Bielska A, Szalkowska A, Parfieniuk E, Ciborowski M, Wolczynski S, Kretowski A (2019) Prenatal circulating microRNA signatures of foetal Down syndrome. Sci Rep 9:2394

    PubMed  PubMed Central  Google Scholar 

  • Zerbo O, Leong A, Barcellos L, Bernal P, Fireman B, Croen LA (2015) Immune mediated conditions in autism spectrum disorders. Brain Behav Immun 46:232–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Weinrich JAP, Russ JB, Comer JD, Bommareddy PK, DiCasoli RJ, Wright CVE, Li Y, van Roessel PJ, Kaltschmidt JA (2017) A role for dystonia-associated genes in spinal GABAergic interneuron circuitry. Cell Rep 21(3):666–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhou W, Liu Y, Liu T, Li C, Wang L (2018) Oncogenic role of microRNA- 532–5p in human colorectal cancer via targeting of the 5’ UTR of RUNX3. Oncol Lett 15:7215–7220

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen M, Qiu Z, Hu K, McGee W, Chen X, Liu J, Zhu L, Wu JY (2016a) MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. Protein Cell 7:489–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ueno Y, Liu XS, Buller B, Wang X, Chopp M, Zhang ZG (2013) The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci 33:6885–6894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zheng F, You Y, Ma Y, Lu T, Yue W, Zhang D (2016) Growth arrest specific gene 7 is associated with schizophrenia and regulates neuronal migration and morphogenesis. Mol Brain, 9(1)

  • Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JL (2008) Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol 510:79–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Zhang C, Guan Y, Chen Y, Lu Q, Jie L, Gao H, Du H, Zhang H, Liu Y, Wang X (2017) Screening the expression characteristics of several miRNAs in G93A-SOD1 transgenic mouse: altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem 145(1):51–67

    PubMed  Google Scholar 

  • Zimprich A, Hatala K, Riederer F, Stogmann E, Aschauer H, Stamenkovic M (2008) Sequence analysis of the complete SLITRK1 gene in Austrian patients with Touretteʼs disorder. Psychiatr Genet 18(6):308–309

    PubMed  Google Scholar 

  • Zong W, Liu S, Wang X, Zhang J, Zhang T, Liu Z, Wang D, Zhang A, Zhu M, Gao J (2015) Trio gene is required for mouse learning ability. Brain Res 1608:82–90

    CAS  PubMed  Google Scholar 

Download references

Funding

This review work was funded by the Fundamental Research Grant Scheme (FRGS) 203/PPSP/6171233, sponsored by Ministry of Higher Education, Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Iman Imtiyaz Ahmed Juvale: Designing and drafting the manuscript. Ahmad Tarmizi Che Has: Revising the manuscript critically and approving the manuscript to be published.

Corresponding author

Correspondence to Ahmad Tarmizi Che Has.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The bibliographic entries of “Chandley et al. 2015; Ciaccio et al. 2017; Curatolo et al. 2014; Frye et al. 2017; Green et al. 2019; Hamed et al. 2015; Huntley et al. 2012; Mor et al. 2015; Nakata et al. 2019; Novotny et al. 2018; Ornoy and Spivak 2019; and Pagliaroli et al. 2020” were incomplete. Full information regarding the corrections made can be found in the erratum/correction for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juvale, I.I.A., Che Has, A.T. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 71, 1338–1355 (2021). https://doi.org/10.1007/s12031-021-01825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01825-7

Keywords

Navigation