Skip to main content
Log in

Optimal Fitting of the Freidberg Solution to In Situ Spacecraft Measurements of Magnetic Clouds

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We report, in detail, an optimization approach for fitting a three-dimensional (3D) magnetic cloud (MC) model to in situ spacecraft measurements. The model, dubbed the Freidberg solution, encompasses 3D spatial variations in a generally cylindrical geometry, as derived from a linear force-free formulation. The approach involves a least-squares minimization implementation with uncertainty estimates from magnetic field measurements. We present one case study of the MC event on 22 May 2007 to illustrate the method and demonstrate the satisfying result of the minimum reduced \(\chi^{2}\lesssim1\), obtained from the Solar and TErrestrial RElations Observatory (STEREO) Behind spacecraft measurements. In addition, since the Advanced Composition Explorer (ACE) spacecraft at Earth crossed the STEREO Behind solution domain with an appropriate separation distance, the result from the optimally fitted Freidberg solution along the ACE spacecraft path is compared with the actual measurements of magnetic field components. A correlation coefficient of 0.89 is obtained between the two sets of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93(A7), 7217. DOI.

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1995, Interplanetary magnetohydrodynamics. In: Burlag, L.F., Interplanetary Magnetohydrodynamics, Int. Ser. Astron. Astrophys. 3, 272, Oxford University Press, London. ISBN13: 978-0-19-508472-6. ADS.

    Google Scholar 

  • Chollet, E.E., Mewaldt, R.A., Cummings, A.C., Gosling, J.T., Haggerty, D.K., Hu, Q., Larson, D., Lavraud, B., Leske, R.A., Opitz, A., Roelof, E.C., Russell, C.T., Sauvaud, J.-A.: 2010, Multipoint connectivity analysis of the May 2007 solar energetic particle events. J. Geophys. Res. 115(A12), A12106. DOI.

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., DéMoulin, P., Farrugia, C.J.: 2003, Magnetic helicity analysis of an interplanetary twisted flux tube. J. Geophys. Res. 108(A10), 1362. DOI. ADS.

    Article  Google Scholar 

  • Farrugia, C.J., Janoo, L.A., Torbert, R.B., Quinn, J.M., Ogilvie, K.W., Lepping, R.P., Fitzenreiter, R.J., Steinberg, J.T., Lazarus, A.J., Lin, R.P., Larson, D., Dasso, S., Gratton, F.T., Lin, Y., Berdichevsky, D.: 1999, A uniform-twist magnetic flux rope in the solar wind. In: Suess, S.T., Gary, G.A., Nerney, S.F. (eds.) Amer. Inst. Phys. Conf. Ser. 471, 745. DOI. ADS.

    Chapter  Google Scholar 

  • Freidberg, J.P.: 2014, Ideal MHD, Cambridge University Press, Cambridge, 546.

    Book  Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T.: 2012, A global magnetic topology model for magnetic clouds. I. Astrophys. J. 748(2), 109. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Hidalgo, M.A., Cid, C., Vinas, A.F., Sequeiros, J.: 2002, A non-force-free approach to the topology of magnetic clouds in the solar wind. J. Geophys. Res. 107(A1), 1002. DOI. ADS.

    Article  Google Scholar 

  • Hu, Q.: 2017a, The Grad–Shafranov reconstruction in twenty years: 1996 – 2016. Sci. China Earth Sci. 60, 1466. DOI. ADS

    Article  ADS  Google Scholar 

  • Hu, Q.: 2017b, The Grad–Shafranov reconstruction of toroidal magnetic flux ropes: method development and benchmark studies. Solar Phys. 292, 116. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hu, Q., Linton, M.G., Wood, B.E., Riley, P., Nieves-Chinchilla, T.: 2017, The Grad–Shafranov reconstruction of toroidal magnetic flux ropes: first applications. Solar Phys. 292(11), 171. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hu, Q., He, W., Qiu, J., Vourlidas, A., Zhu, C.: 2021, On the quasi-three dimensional configuration of magnetic clouds. Geophys. Res. Lett. 48(2), e2020GL090630. DOI.

    Article  ADS  Google Scholar 

  • Khrabrov, A.V., Sonnerup, B.U.Ö.: 1998, DeHoffmann–Teller analysis. ISSI Sci. Rep. Ser. 1, 221. ADS.

    ADS  Google Scholar 

  • Kilpua, E.K.J., Liewer, P.C., Farrugia, C., Luhmann, J.G., Möstl, C., Li, Y., Liu, Y., Lynch, B.J., Russell, C.T., Vourlidas, A., Acuna, M.H., Galvin, A.B., Larson, D., Sauvaud, J.A.: 2009, Multispacecraft observations of magnetic clouds and their solar origins between 19 and 23 May 2007. Solar Phys. 254, 325. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Szabo, A., Ogilvie, K.W., Mish, W.H., Vassiliadis, D., Lazarus, A.J., Steinberg, J.T., Farrugia, C.J., Janoo, L., Mariani, F.: 1997, The wind magnetic cloud and events of October 18-20, 1995: interplanetary properties and as triggers for geomagnetic activity. J. Geophys. Res. 102, 14049. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Huttunen, K.E.J., Lin, R.P., Bale, S.D., Russell, C.T., Galvin, A.B.: 2008, Reconstruction of the 2007 May 22 magnetic cloud: how much can we trust the flux-rope geometry of CMEs? Astrophys. J. Lett. 677, L133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1950, On force-free solution. Ark. Fys. 2, 361.

    MathSciNet  Google Scholar 

  • Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., Vršnak, B., Biernat, H.K.: 2008, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 26, 3139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Miklenic, C., Temmer, M., Galvin, A.B., Luhmann, J.G., Kilpua, E.K.J., Leitner, M., Nieves-Chinchilla, T., Veronig, A., Biernat, H.K.: 2009a, Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. J. Geophys. Res. 114, A04102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009b, Optimized Grad – Shafranov reconstruction of a magnetic cloud using STEREO- wind observations. Solar Phys. 256, 427. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys. J. 823, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2007, Numerical Recipes in C++ : The Art of Scientific Computing, 778, Cambridge University Press, New York. http://numerical.recipes/. ADS.

    MATH  Google Scholar 

  • Vandas, M., Romashets, E.P.: 2003, A force-free field with constant alpha in an oblate cylinder: a generalization of the Lundquist solution. Astron. Astrophys. 398, 801. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.: 2017, Toroidal flux ropes with elliptical cross sections and their magnetic helicity. Solar Phys. 292(9), 129. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

QH acknowledges NASA grants 80NSSC17K0016, 80NSSC18K0622, 80NSSC19K0276, 80NSSC21K0003, and NSF grants AGS-1650854, and AGS-1954503 for support. The ACE spacecraft Level2 data are accessed via the ACE Science Center (http://www.srl.caltech.edu/ACE/ASC/). The STEREO spacecraft data are accessed via the STEREO Science Center (https://stereo-ssc.nascom.nasa.gov/) and NASA CDAWeb (https://cdaweb.gsfc.nasa.gov/index.html/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Hu.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The DeHoffmann–Teller (HT) Analysis

Appendix: The DeHoffmann–Teller (HT) Analysis

The DeHoffmann–Teller (HT) analysis is used to determine an HT frame from the time-series data, following the approach given by Khrabrov and Sonnerup (1998). One advantage of an HT frame is that by definition, in the HT frame, the electric field vanishes, then it follows from the Faraday law, the time-dependence of the magnetic induction \(\mathbf{B}\) should also vanish. Therefore the magnetic field can be regarded to be stationary in time, consistent with the MC model assumptions.

Namely, for a time-series interval containing magnetic field \(\mathbf{B}^{(m)}\) and plasma bulk flow velocity \(\mathbf{V}^{(m)}\) measurements (\(m=1,2, \ldots, M\)) in the spacecraft frame, a constant HT frame velocity \(\mathbf{V}_{HT}\) is obtained by minimizing (Khrabrov and Sonnerup, 1998):

$$ D_{HT}=\frac{1}{M}\sum_{m=1}^{M}|(\mathbf{V}^{(m)}-\mathbf{V}_{HT}) \times\mathbf{B}^{(m)}|^{2}. $$
(7)

The quality of an HT frame is demonstrated by the component-wise plots of \(\mathbf{E}_{c}=\mathbf{V}\times\mathbf{B}\) versus \(\mathbf{E}_{HT}=\mathbf{V}_{HT}\times\mathbf{B}\), and \(\mathbf{v'}=\mathbf{V}-\mathbf{V}_{HT}\) versus the Alfvén velocity \(\mathbf{V}_{A}\). The latter (so-called Walén plot) also indicates the relative importance of the inertia force (i.e. \(\rho\mathbf{v'}\cdot\nabla\mathbf{v'}\)) compared to the Lorentz force in the HT frame. Two metrics, the correlation coefficient for the former, and the slope of a linear regression line for the latter, are calculated, respectively.

For the STB MC interval given in Figure 2, Figure 9 shows the HT analysis results with the HT frame velocity \(\mathbf{V}_{HT}=[ 440.16, -36.54, -0.08099]\) km/s in RTN coordinates. The corresponding correlation coefficient and regression line slope are 0.9990 and −0.084, respectively. For the STA MC interval marked in Figure 6 (right), the corresponding correlation coefficient and regression line slope are 0.9978 and 0.033, respectively, with \(\mathbf{V}_{HT}= [482.66, 38,47, -16.28]\) km/s in RTN coordinates. Therefore for both cases, the assumption of time-stationary quasi-static equilibrium is satisfied when the analysis was carried out in the corresponding HT frame (with the correlation coefficient \(\approx1.0\) and the magnitude of Walén slope \(\ll1.0\)).

Figure 9
figure 9

HT analysis results for the STB MC interval. Left panel: Component-wise plot of \(\mathbf{E}_{HT}\) versus \(\mathbf{E}_{c}\). Right panel: Component-wise plot of \(\mathbf{v'}\) versus the Alfvén velocity in km/s. A linear regression line is drawn with the slope denoted in the top left corner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q. Optimal Fitting of the Freidberg Solution to In Situ Spacecraft Measurements of Magnetic Clouds. Sol Phys 296, 101 (2021). https://doi.org/10.1007/s11207-021-01843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01843-z

Keywords

Navigation