Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURE, AND DFT STUDY OF METHYL 3-FLUORO-5-(4,4,5,5-TETRAMETHYL-1,3,2- DIOXABOROLAN-2-YL)BENZOATE AND (2-METHYL-4- (4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL) PHENYL)(PYRROLIDIN-1-YL)METHANONE COMPOUNDS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Methyl 3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate and (2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)(pyrrolidin-1-yl)methanone are boric acid ester intermediates with benzene rings. In this paper, the title compounds are obtained by a three-step substitution reaction. The structures of the compounds are confirmed by FTIR, 1H and 13C NMR spectroscopy, and mass spectrometry. At the same time, single crystals of the title compounds are measured by X-ray diffraction and subjected to crystallographic and conformational analyses. The molecular structures are further calculated using density functional theory (DFT), which were compared with the X-ray diffraction value. The results of the conformational analysis indicate that the molecular structures optimized by DFT are consistent with the crystal structures determined by single crystal X-ray diffraction. In addition, the molecular electrostatic potential and frontier molecular orbitals of the title compounds are further investigated by DFT, and some physicochemical properties of the compounds are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. A. Darehkordi, V. Salehi, F. Rahmani, and M. Karimipour. Chem. Heterocycl. Compd., 2018, 54, 554-558.

    Article  CAS  Google Scholar 

  2. D. Kanoriya, S. Singhal, V. Garg, A. R. Pradeep, S. Garg, and A. Kumar. J. Invest. Clin. Dent., 2018, 9, e12271.

    Article  Google Scholar 

  3. J. Boeseken and N. Vermaas. J. Phys. Chem., 2002, 35, 1477-1489.

    Article  CAS  Google Scholar 

  4. D. H. Kim, K. W. Park, I. G. Chae, J. Kundu, E. H. Kim, J. K. Kundu, and K. S. Chun. Mol. Carcinog., 2016, 55, 1096-1110.

    Article  CAS  PubMed  Google Scholar 

  5. B. R. You, H. R. Shin, B. R. Han, S. H. Kim, and W. H. Park. Mol. Med. Rep., 2015, 11, 1428-1434.

    Article  CAS  PubMed  Google Scholar 

  6. W. He, R. Liu, S. H. Yang, and F. Yuan. Anticancer Drugs, 2015, 26, 293-300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Huber, S. S. Jahromy, C. Jordan, M. Schreiner, M. Harasek, A. Werner, and F. Winter. Energies, 2019, 12, 1086.

    Article  CAS  Google Scholar 

  8. J. S. Zhao, P. Jin, N. Xi, and D. D. Wei. Chin. J. Struct. Chem., 2017, 36, 937-942.

  9. W. Y. Lin, F. Yang, A. N. Duan, W. W. You, and P. L. Zhao. Chin. J. Struct. Chem., 2018, 37, 1557-1562.

  10. G. M. Sheldrick. SHELXS-2014/7. Program for Solution of Crystal Structures. University of Göttingen: Göttingen, Germany, 2014.

  11. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and

  12. A. Frish, A. B. Nielsen, and A. J. Holder. Gauss View User Manual. Gaussian: Pittsburg, PA, 2011.

  13. Y. Y. Liu, K. Z. Lv, Y. Li, Q. L. Nan, and J. Y. Xu. Chin. J. Struct. Chem., 2019, 38, 171-186.

  14. B. J. Deppmeier, A. J. Driessen, T. S. Hehre, W. J. Hehre, J. A. Johnson, P. E. Klunzinger, J. M. Leonard, I. N. Pham, W. J. Pietro, and J. Yu. Spartan08. Wavefunction Inc.: Irvine, CA, 2009.

  15. H. H. Brintzinger, M. H. Prosenc, F. Schaper, A. Weeber, and U. Wieser. J. Mol. Struct., 1999, 485-486, 409-419.

    Article  CAS  Google Scholar 

  16. N. Huang, C. Kalyanaraman, K. Bernacki, and M. P. Jacobson. Phys. Chem. Chem. Phys., 2006, 8, 5166-5177.

    Article  CAS  PubMed  Google Scholar 

  17. K. Fukui, T. Yonezawa, and H. Shingu. J. Chem. Phys., 2004, 20, 1653.

  18. M. D. Rozeboom, I. M. Tegmo-Larsson, and K. Houk. J. Org. Chem., 1981, 46, 2338-2345.

    Article  CAS  Google Scholar 

  19. C. G. Zhan, J. A. Nichols, and D. A. Dixon. J. Phys. Chem. A, 2003, 107, 4184-4195.

    Article  CAS  Google Scholar 

  20. R. G. Parr. J. Am. Chem. Soc., 1984, 15, 7512-7516.

  21. R. G. Pearson. Proc. Natl. Acad. Sci., 1986, 83, 8440-8441.

    Article  CAS  Google Scholar 

  22. R. G. Parr, P. K. Chattaraj, and K. Pratim J. Am. Chem. Soc., 1991, 113, 1854-1855.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Guizhou University of Traditional Chinese Medicine 2018 (annual academic new seedling cultivation and innovation exploration special project, Qiankehe platform talent [2018]5766-14). The theoretical calculations were conducted at the ScGrid and Deepcomp 7000 the Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -S. Zhao.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 6, pp. 913-920.https://doi.org/10.26902/JSC_id74415

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P.Y., Yang, Z.S., Wu, Q.M. et al. SYNTHESIS, CRYSTAL STRUCTURE, AND DFT STUDY OF METHYL 3-FLUORO-5-(4,4,5,5-TETRAMETHYL-1,3,2- DIOXABOROLAN-2-YL)BENZOATE AND (2-METHYL-4- (4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL) PHENYL)(PYRROLIDIN-1-YL)METHANONE COMPOUNDS. J Struct Chem 62, 845–852 (2021). https://doi.org/10.1134/S0022476621060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621060044

Keywords

Navigation