Skip to main content

Advertisement

Log in

Plasmon Resonances of Graphene-Dielectric-Metal Structures Calculated by the Method of Recurrence Relations

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene supports surface plasmons in the terahertz range, and compared with noble-metal plasmons, they show an extreme level of field confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic field. Nevertheless, its interaction with light is normally rather weak. To obtain a more powerful capability of excite plasmons, a combination of graphene and artificial structures (metamaterials) present a powerful tunability for enhancing light-matter interaction. These features make graphene metamaterials a promising candidate for plasmonics and surface plasmon resonance for biological sensors. In this work, we study the plasmon spectra in a finite number of graphene layers on a metallic-dielectric substrate surrounded by materials with different dielectric constants. It is shown that using standard electromagnetic boundary conditions and solving the recurrence relation (a suitable alternative to transfer matrix method) for the coefficients of the electric potential between graphene layers, an explicit effective dielectric function of the metamaterial can be obtained giving the plasmon dispersion relations. It is found that the metal-dielectric-layered graphene structure supports both high-energy optical plasmon oscillations and out-of-phase low-energy acoustic charge density excitations. Experimentally, the Kretschmann configuration can be used to excite the surface plasmon resonances. It is based on the observation of a sharp minimum in the reflection coefficient versus angle (or wavelength) curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayashi S, Okamoto T (2012) Plasmonics: visit the past to know the future. J Phys D: Appl Phys 45:433001

    Article  Google Scholar 

  2. Shang J, Zhang L, Xu W (2012) Surface plasmon polariton: physics and applications. J Phys D: Appl Phys 45:113001

    Article  Google Scholar 

  3. Verma SS (2018) Plasmonics in nanomedicine: a review. Global J Nanomedicine 4:1

    CAS  Google Scholar 

  4. Stockman MI, Kneipp K, Bozhevolnyi SI, Saha S, Dutta A, Ndukaife J, Kinsey N, Reddy H, Guler U, Shalaev VM (2018) Roadmap on plasmonics. J Optics 20:043001

    Article  Google Scholar 

  5. Han X, Liu K, Sun C (2019) Plasmonics for biosensing. Materials 12:1411

    Article  CAS  Google Scholar 

  6. Sekatskii SK, Smirnov A, Dietler G, Alam MNE, Vasiliev M, Alameh K (2018) Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms. Appl Sci 8:248

  7. Kravets VG, Jalil R, Kim YJ, Ansell D, Aznakayeva DE, Thackray B, Britnell L, Belle BD, Withers F, Radko IP, Han Z, Bozhevolnyi SI, Novoselov KS, Geim AK, Grigorenko AN, Graphene-protected copper and silver plasmonics. Sci Rep. https://doi.org/10.1038/srep05517

  8. Li Z, Yao Z, Xia F, Shen S, Tian J, Liu Y (2015) Graphene plasmonic metasurfaces to steer infrared light. Sci Rep https://doi.org/10.1038/srep12423

  9. Liu C, Bai Y, Zhou J, Zhao Q, Qiao L (2017) A review of graphene plasmons and its combination with metasurface. J Korean Ceramic Soc 54:342

    Article  Google Scholar 

  10. Galiffi E, Pendry JB, Hudabro PA (2018) Broadband tunable THz absorption with singular graphene metasurfaces. ACS Nano 12:1006

    Article  CAS  Google Scholar 

  11. Pisano E, Garcia-Ortiz CE, Armenta-Monzon F, Garcia-Mendez M, Collo V (2018) Efficient and directional excitation of surface plasmon polaritons by oblique incidence on metallic ridges. Plasmonics 13:1935

    Article  CAS  Google Scholar 

  12. Shi C, He X, Peng J, Xiao G, Liu F, Lin F, Zhang H (2019) Tunable terahertz hybrid graphene-metal patterns metamaterials. Opt Laser Technol 144:28

    Article  Google Scholar 

  13. Huang S, Song C, Zhang G, Yuan H (2017) Graphene plasmonics: physics and potential applications. Nanophotonics 6:1191

    Article  CAS  Google Scholar 

  14. Zare MS, Nozhat N, Rashiditabar R (2019) A strong controllable absorber using graphene-metal nanostructures. J Mod Opt 66:7

    Article  CAS  Google Scholar 

  15. Peng L, Li XF, Gao X, Jiang X, Li SM (2019) Methodology for the design of a multifunctional device with switchable absorption and polarization conversion modes by graphene and metallic metasurfaces. Op Matt Ex 9:687

    Article  CAS  Google Scholar 

  16. Zhang HJ, Zheng GG, Chen YY, Xu LH (2018) Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks. Superlattices Microstruct 117:137

    Article  CAS  Google Scholar 

  17. Benaziez S, Dibi Z,Benaziez N (2018) Reflectivity optimization of the SPR graphene sensor, Nanopages. https://doi.org/10.1556/566.2018.0023

  18. Huang Y, Zhong S, Shen Y, Yao L, Yu Y, Cui D (2017) Graphene/insulator stack based ultrasensitive terahertz sensor with surface plasmon resonance. IEEE Photonics Journal 9https://doi.org/10.1109/JPHOT.2017.2765182

  19. Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review 17:2161

    Google Scholar 

  20. Chen X, Fan W, Song C (2018) Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing. Carbon 133:416

    Article  CAS  Google Scholar 

  21. Huang Y, Zhong S, Shen YC, Yub Y, Cui D (2018) Terahertz phase jumps for ultra-sensitive graphene plasmon sensing. Nanoscale 10:22466

    Article  CAS  Google Scholar 

  22. Vahed H, Nadri C (2019) Ultra-sensitive surface plasmon resonance biosensor based on MoS2–graphene hybrid nanostructure with silver metal layer. Opt Quant Electron 51:20

    Article  Google Scholar 

  23. Chen S, Lin C (2019) Figure of merit analysis of graphene based surface plasmon resonance biosensor for visible and near infrared. Optics Communications 435:102

    Article  CAS  Google Scholar 

  24. Niknam S, Yazdi M, Amlashi SB (2019) Enhanced ultra-sensitive metamaterial resonance sensor based on double corrugated metal stripe for terahertz sensing. Sci Rep 9:751

  25. Han L, He X, Ge L, Huang T, Ding H, Wu C (2019) Comprehensive study of SPR biosensor performance based on metal-ITO-graphene/TMDC hybrid multilayer. Plasmonics. https://doi.org/10.1007/s11468-019-01004-w

    Article  Google Scholar 

  26. Horing NJM (2009) Coupling of graphene and surface plasmons. Phys Rev B 80:193401

    Article  Google Scholar 

  27. Gonzalez de la Cruz G (2015) Role of metallic substrate on the plasmon modes in double-layer graphene structures. Solid State Commun 213:6

    Article  Google Scholar 

  28. Gumbs G, Lurov A, Wu JY, Lin MF, Fekete P (2016) Plasmon excitations of multi-layer graphene on a conducting substrate. Sci Rep 6:21063

    Article  CAS  Google Scholar 

  29. Gonzalez de la Cruz G (2019) Bulk and surface plasmons in graphene finite superlattices. Superlattices Microstruct 125:315

    Article  CAS  Google Scholar 

  30. Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. New J Phys 8:318

    Article  Google Scholar 

  31. Wang EH, DasSarma S (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 75:205418

    Article  Google Scholar 

  32. Santoro GE, Giuliani G (1988) Acoustic plasmons in a conducting double layer. Phys Rev B 37:937

    Article  CAS  Google Scholar 

  33. Profumo REV, Asgari R, Polini M, MacDonald AH (2012) Double-layer graphene and topological insulator thin-film plasmons. Phys Rev B 85:085443

    Article  Google Scholar 

  34. Lee IH, Yoo D, Avouris P, Low T, Oh SH (2019) Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy, Nat Nanotech https://doi.org/10.1038/s41565-019-036-8AQ

  35. Moradi A (2019) Plasmonic waves of graphene on a conducting substrate. J Mod Opt 66:353

    Article  CAS  Google Scholar 

  36. RA (2016)Define graphene optics: electromagnetic solution of canonical problems IOP Publishing, Bristol BS1 6HG, UK

  37. Zhan T, Shi X, Dai Y, Liu X, Zi J (2013) Transfer matrix method for optics in graphene layers, J Phys Condens Matter 25:215301

Download references

Funding

This work is partially supported by Consejo Nacional de Ciencia y Tecnologia (Conacyt), Mexico under grant 254414.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally.

Corresponding author

Correspondence to Gerardo Gonzalez de la Cruz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Cruz, G.G., Oliva-Leyva, M. Plasmon Resonances of Graphene-Dielectric-Metal Structures Calculated by the Method of Recurrence Relations. Plasmonics 16, 2259–2267 (2021). https://doi.org/10.1007/s11468-021-01466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01466-x

Keywords

Navigation