Skip to main content
Log in

Nickel nanoparticles anchored over porous triazine-thiourea-sulfonamide to explore the reduction of carbonyl compounds

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In the recent few years, polymer based nanomaterials are emerged as promising candidates in new generation catalysis. In this regard, we report the synthesis of nickel nanoparticles at mild conditions using porous triazine-thiourea-sulfonamide support (TTSA). The novel heterogeneous polymer support was synthesized by silica template method. The synthetically modified porous material (TTSA@Ni NPs) was analyzed in details over a number of physicochemical methods like, FT-IR, FE-SEM, HR-TEM, EDX, XRD, TGA and ICP-OES. In catalytic exploration we aimed the synthesis of alochohols from the reduction of aldehydes/ketones in water. Furthermore, the prepared green heterogeneous catalyst can be recycled and recovered six times without significant loss in the catalytic activity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Nur, S. Ikeda, B. Ohtani, J. Catal. 204, 402–408 (2001)

    Article  CAS  Google Scholar 

  2. F. Panahi, F. Haghighi, A. Khalafi-Nezhad, Appl. Organomet. Chem. (2020). https://doi.org/10.1002/aoc.5880

    Article  Google Scholar 

  3. D. Mao, W. Yang, J. Xia, B. Zhang, Q. Song, Q. Chen, J. Catal. 230, 140–149 (2005)

    Article  CAS  Google Scholar 

  4. J. Tejero, F. Cunill, M. Iborra, F. Izquierdo, C. Fite, J. Mol. Catal. Chem. 182, 541–554 (2002)

    Article  Google Scholar 

  5. K. Manabe, S. Iimura, M. Xiang, S. Kobayashi, J. Am. Chem. Soc. 124, 11971–11978 (2002)

    Article  CAS  Google Scholar 

  6. A. Maleki, R. Taheri-Ledari, R. Ghalavand, R. Firouzi-Haji, J. Phys. Chem. Solids. 136, 109200–109208 (2020)

    Article  CAS  Google Scholar 

  7. M. Mahmoodi, A. Bamoniri, A. Taherpour, J. Heterocycl. Chem. 57, 1–14 (2020)

    Article  Google Scholar 

  8. S. Hemmati, M. Heravi, B. Karmakar, H. Veisi, J. Mol. Liq. 319, 114302–114311 (2020)

    Article  CAS  Google Scholar 

  9. P. Ghasemi, M. Yarie, M.A. Zolfigol, A.A. Taherpour, M. Torabi, ACS Omega 5, 3207–3217 (2020)

    Article  CAS  Google Scholar 

  10. Y. Lei, M. Zhang, Q. Li, Y. Xia, G. Leng, Polymers 11, 2091 (2019)

    Article  CAS  Google Scholar 

  11. Y. Lei, Y. Wan, G. Li, X.Y. Zhou, Y. Gu, J. Feng, R. Wang, Mater. Chem. Front. 11, 1541–1549 (2017)

    Article  Google Scholar 

  12. S. Babaee, M. Zarei, M.A. Zolfigol, S. Khazalpour, M. Hasani, U. Rinner, R. Schirhagl, N. Norouzi, S. Rostamnia, RSC Adv. 11, 2141–2157 (2021)

    Article  CAS  Google Scholar 

  13. M. Manzoli, E.C. Gaudino, G. Cravotto, S. Tabasso, R.B. Nasir Baig, E. Colacino, R.S. Varma, ACS Sustain. Chem. Eng. 7, 5963–5974 (2019)

    Article  CAS  Google Scholar 

  14. M. Dajek, R. Kowalczyk, P.J. Boratynski, Catal. Sci. Technol. 8, 4358–4363 (2019)

    Article  Google Scholar 

  15. R. Ghorbani-Vaghei, S. Alavinia, N. Sarmast, Appl. Organomet. Chem. 32, e4038 (2018)

    Google Scholar 

  16. R. Ghorbani-Vaghei, S. Alavinia, Z. Merati, V. Izadkhah, Appl. Organomet. Chem. 32, e4127 (2018)

    Article  Google Scholar 

  17. S. Alavinia, R. Ghorbani-Vaghei, J. Phys. Chem. Solids. 146, 109573–109584 (2018)

    Article  Google Scholar 

  18. A. Fatehi, R. Ghorbani-Vaghei, S. Alavinia, J. Mahmoodi, Chem. Select. 5, 944–951 (2020)

    CAS  Google Scholar 

  19. F. Hamidi Dastjerdi, R. Ghorbani-Vaghei, S. Alavinia, Catal. Lett. 150, 3514–3522 (2020)

    Article  CAS  Google Scholar 

  20. N. Shekarlab, R. Ghorbani-Vaghei, S. Alavinia, Appl. Organomet. Chem. 34, e5918 (2020)

    Article  CAS  Google Scholar 

  21. S. Solgi, R. Ghorbani-Vaghei, S. Alavinia, J. Porous. Mater. 28, 289–298 (2020)

    Article  Google Scholar 

  22. S. Alavinia, R. Ghorbani-Vaghei, New J. Chem. 44, 13062–13073 (2020)

    Article  CAS  Google Scholar 

  23. W. Stöberand, A. Fink, J. Colloid. Interf. Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  24. S. Khan, A. Ghatak, S. Bhar, Tetrahedron Lett. 56, 2480–2487 (2015)

    Article  CAS  Google Scholar 

  25. S.W. Sing, W. Kenneth, Adsorp. Sci. Technol. 22, 773–782 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bu-Ali Sina University, Center of Excellence Developmental of Environmentally Friendly Methods for Chemical Synthesis (CEDEFMCS) for financial supporting of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Ghorbani-Vaghei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, A., Ghorbani-Vaghei, R. & Alavinia, S. Nickel nanoparticles anchored over porous triazine-thiourea-sulfonamide to explore the reduction of carbonyl compounds. J Porous Mater 28, 1643–1653 (2021). https://doi.org/10.1007/s10934-021-01104-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01104-1

Keywords

Navigation