Skip to main content

Advertisement

Log in

Evaluation of Phytoremediation Potential of Pteris vittata L. on Arsenic Contaminated Soil Using Allium cepa Bioassay

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The present study assessed the utility of Allium cepa based cyto-genotoxicity bioassays in evaluating the arsenic toxicity and remediation potential of Pteris vittata on contaminated soil of Lakhimpur-Kheri district. Untreated and P. vittata treated soil extracts were used for cyto-genotoxicity tests in A. cepa. Results showed that P. vittata extracted high concentration of arsenic, which ranged from 220 to 1420 mgkg−1 in different soils. Cyto-genotoxic assessment of A. cepa showed that extract of P. vittata treated soil had lower cyto-genotoxic effects as compared to untreated soil. A higher mitotic index (10%) while lower mitotic depression (29%), relative abnormality rate (10%), chromosomal aberrations (1%) and micronuclei (2%) were detected in root meristematic cells of A. cepa exposed to remediated soil extract in comparison to untreated soil. The studies provide a simple, rapid and economic cyto-genotoxicity bioassay tool for evaluating toxicity of contaminated soils of contaminated soils as well as revealed the phytoremdiation property of P. vittata against arsenic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atoyebi SM. Oyeyemi IT, Dauda BA, Bakare AA (2015) Genotoxicity and antigenotoxicity of aqueous extracts of herbal recipes containing Luffa cylindrica (L), Nymphaea lotus (L) and Spondias mombin (L) using the Allium cepa (L) assay. Afr J Pharm Pharmaco 9(15):492–499

    Article  Google Scholar 

  • Cabrera GL, Rodriguez DMG (1999) Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mut Res Fund Mol M 426(2):211–214

    Article  CAS  Google Scholar 

  • Das S, Chou ML, Jean JS, Yang HJ, Kim PJ (2017) Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata. J hazard Mat 325:279–287

    Article  CAS  Google Scholar 

  • Gonzaga MI, Santos JA, Ma LQ (2008) Phytoextraction by arsenic hyperaccumulate or Pteris vittata L. from six arsenic-contaminated soils: repeated harvests and arsenic redistribution. Environment Poll 154(2):212–218

    Article  CAS  Google Scholar 

  • Grant WF (1999) Higher plant assays for the detection of chromosomal aberrations and gene mutations-a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res 426:107–112

    Article  CAS  Google Scholar 

  • Gupta K, Mishra K, Srivastava S, Kumar A (2018) Cytotoxic assessment of chromium and arsenic using chromosomal behavior of root meristem in Allium cepa L. Bull Environ Contamin Toxicol 100:803–808

    Article  CAS  Google Scholar 

  • Gupta K, Srivastava A, Srivastava S, Kumar A (2020) Phyto-genotoxicity of arsenic contaminated soil from Lakhimpur Kheri, India on Vicia faba L. Chemosphere 241:125063

    Article  CAS  Google Scholar 

  • Han YH, Liu X, Rathinasabapathi B, Li HB, Chen Y, Ma LQ (2017) Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environ Pollut 227:569–577

    Article  CAS  Google Scholar 

  • Hu Y, Tan L, Zhang SH, Zuo YT, Han X, Liu N, Lu WQ, Liu AL (2017) Detection of genotoxic effects of drinking water disinfection byproducts using Vicia faba bioassay. Environ Sci Pollut Res 24(2):1509–1517

    Article  CAS  Google Scholar 

  • Kirsch VM, Plas G, Elhajouji A, Lukamowicz M, Gonzalez L, VandeLoock K (2011) The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 85(8):873–899

    Article  Google Scholar 

  • Kumar A, Dixit G, Singh AP, Srivastava S, Mishra K, Tripathi RD (2016) Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism. Ecotoxicol Environ Saf 133:350e359

    Article  Google Scholar 

  • Kumar A, Tripathi RD, Singh RP, Dwivedi S, Chakrabarty D, Mallick S, Trivedi PK, Adhikari B (2014) Evaluation of amino acid profile in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes under arsenic stress grown in hydroponic condition. Biol Plant 58(4):733–742

    Article  CAS  Google Scholar 

  • Lyu G, Li D, Li S, Ning C, Qin R (2020) Genotoxic effects and proteomic analysis on Allium cepa var. agrogarum L. root cells under Pb stress. Ecotoxicology. https://doi.org/10.1007/s10646-020-02236-x

  • Mahapatra K, De S, Banerjee S, Roy S (2019) Pesticide mediated oxidative stress induces genotoxicity and disrupts chromatin structure in fenugreek (Trigonellafoenum-graecum L.) seedlings. J Hazard Mater 369:362–374

    Article  CAS  Google Scholar 

  • Mercado SAS, Caleño JDQ (2020) Cytotoxic evaluation of glyphosate, using Allium cepa L. as bioindicator. Sci Total Environ 700:134452

    Article  CAS  Google Scholar 

  • Rahman MA, Rahman A, Khan MZK, Renzaho AM (2018) Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: a scoping review. Ecotoxicol Environ Saf 150:335–343

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Ma LQ, Srivastava M (2006) Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites. Floriculture ornamental plant biotechnology 3(32):304–311

    Google Scholar 

  • Sharma AK, Sharma A (1980) Chromosome techniques: theory and practice, 3rd edn. Butterworths and Co. Ltd, London

    Google Scholar 

  • Sharma S, Vig AP (2012) Genotoxicity of atrazine, avenoxan, diuron and quizalofop-P-ethyl herbicides using the Allium cepa root chromosomal aberration assay. Terrest Aquat Environ Toxicol 6:90–95

    Google Scholar 

  • Silveira GL, Lima MGF, Reis GB dos, Palmieri MJ, Andrade-Vieria LF (2017) Toxic effects of environmental pollutants: comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere 178:359–367

    Article  CAS  Google Scholar 

  • Srivastava PK, Singh M, Gupta M, Singh N, Kharwar RN, Tripathi RD, Nautiyal CS (2015) Mapping of arsenic pollution with reference to paddy cultivation in the middle Indo-Gangetic Plains. Environ Monitor Assess 187(4):198

    Article  Google Scholar 

  • Srivastava S (ed) (2020) Arsenic in drinking water and food. Springer, Berlin

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese Brake (Pteris vittata L.) and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Vishnoi N, Dixit S, Sharma YK, Singh DP (2018) Arsenic occurrence in ground water and soil of Uttar Pradesh, India and its phytotoxic impact on crop plants. Res J Pharm Biol Chem Sci 4:338–346

    CAS  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata: uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  Google Scholar 

  • Yang C, Ho YN, Makita R, Inoue C, Chien MF (2020) Cupriavidusbasilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicol Environ Saf 190:110075

    Article  CAS  Google Scholar 

  • Yi H, Wu L, Jiang L (2007) Genotoxicity of arsenic evaluated by Allium-root micronucleus assay. Sci Total Environ 383:232–236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Botany Department, Lucknow University, Lucknow for the facilities. Kiran Gupta is thankful to University Grant Commission (UGC), New Delhi, India for the award Post-doctoral fellowship for women candidate for the financial support. Amit Kumar is thankful to SERB, DST, New Delhi, India for the award and financial assistance in form of SERB-NPDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Srivastava, S., Saxena, G. et al. Evaluation of Phytoremediation Potential of Pteris vittata L. on Arsenic Contaminated Soil Using Allium cepa Bioassay. Bull Environ Contam Toxicol 108, 423–429 (2022). https://doi.org/10.1007/s00128-021-03291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03291-8

Keywords

Navigation