Skip to main content

Advertisement

Log in

The ATO/miRNA-885-5p/MTPN axis induces reversal of drug-resistance in cholangiocarcinoma

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cholangiocarcinoma (CCA) is the second most malignant tumor of the hepatobiliary system. Due to its cumbersome early diagnosis and rapid progression, chemotherapy has become the main treatment option. Primary drug resistance is a major cause of the poor efficacy of chemotherapeutic drugs. Therefore, it is considered urgent to explore new drugs to overcome primary drug resistance of CCA.

Methods

Western blot and qRT-PCR assays were used to assess the expression of myotrophin (MTPN) and microRNA-885-5p (miR-885-5p) in CCA tissues and cells. The viability of CCA cells treated with arsenic trioxide (ATO), 5-fluorouracil (5-Fu) and cisplatin (CDDP) was analyzed using a CCK-8 assay. A luciferase reporter assay was used to assess the interaction between miR-885-5p and MTPN. Kaplan-Meier analyses were used for survival assessments.

Result

We found that ATO can reduce the resistance of CCA cells to 5-Fu and CDDP and promote the killing effect of 5-Fu and CDDP. Low-dose ATO showed an anti-drug-resistance effect through up-regulation of the expression of miR-885-5p. Combined with sequencing results and database predictions, we found that MTPN may serve as a direct target of miR-885-5p. After MTPN knockdown, the sensitivity of CCA cells to 5-FU and CDDP was increased. Finally, we found that ATO can reverse chemotherapy resistance induced by overexpression of MTPN.

Conclusion

Our data indicate that the ATO/miR-885-5p/MTPN axis may serve as a target for improving the sensitivity of CCA cells to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

5–:

Fu

5–:

Fluorouracil

ATO:

arsenic trioxide.

CCA:

cholangiocarcinoma.

CDDP:

cisplatin.

miRNAs:

microRNAs.

MTPN:

myotrophin.

ROS:

reactive oxygen species.

References

  1. J.M. Banales, V. Cardinale, G. Carpino, M. Marzioni, J.B. Andersen, P. Invernizzi, G.E. Lind, T. Folseraas, S.J. Forbes, L. Fouassier, A. Geier, D.F. Calvisi, J.C. Mertens, M. Trauner, A. Benedetti, L. Maroni, J. Vaquero, R.I. Macias, C. Raggi, M.J. Perugorria, E. Gaudio, K.M. Boberg, J.J. Marin, D. Alvaro, Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 13, 261–280 (2016)

    Article  Google Scholar 

  2. S. Rizvi, G.J. Gores, Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145, 1215–1229 (2013)

    Article  CAS  Google Scholar 

  3. A.M. Lustri, S. Di Matteo, A. Fraveto, D. Costantini, A. Cantafora, C. Napoletano, M.C. Bragazzi, F. Giuliante, A.M. De Rose, P.B. Berloco, G.L. Grazi, G. Carpino, D. Alvaro, TGF-beta signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS One 12, e0183932 (2017)

    Article  Google Scholar 

  4. N. Razumilava, G.J. Gores, Cholangiocarcinoma. Lancet 383, 2168–2179 (2014)

    Article  Google Scholar 

  5. F. Zhong, S. Zhang, C. Shao, J. Yang, X. Wu, Arsenic trioxide inhibits cholangiocarcinoma cell growth and induces apoptosis. Pathol. Oncol. Res. 16, 413–420 (2010)

    Article  CAS  Google Scholar 

  6. D. Zhao, Y. Jiang, X. Dong, Z. Liu, B. Qu, Y. Zhang, N. Ma, Q. Han, Arsenic trioxide reduces drug resistance to adriamycin in leukemic K562/A02 cells via multiple mechanisms. Biomed. Pharmacother. 65, 354–358 (2011)

    Article  CAS  Google Scholar 

  7. Y.Y. Zhao, L. Yu, B.L. Liu, X.J. He, B.Y. Zhang, Downregulation of P-gp, Ras and p-ERK1/2 contributes to the arsenic trioxide-induced reduction in drug resistance towards doxorubicin in gastric cancer cell lines. Mol. Med. Rep. 12, 7335–7343 (2015)

    Article  CAS  Google Scholar 

  8. K.A. Boehme, J. Nitsch, R. Riester, R. Handgretinger, S.B. Schleicher, T. Kluba, F. Traub, Arsenic trioxide potentiates the effectiveness of etoposide in Ewing sarcomas. Int. J. Oncol. 49, 2135–2146 (2016)

    Article  CAS  Google Scholar 

  9. J. Mao, L. Ma, Y. Shen, K. Zhu, R. Zhang, W. Xi, Z. Ruan, C. Luo, Z. Chen, X. Xi, S. Chen, Arsenic circumvents the gefitinib resistance by binding to P62 and mediating autophagic degradation of EGFR in non-small cell lung cancer. Cell Death Dis. 9, 963 (2018)

    Article  Google Scholar 

  10. S. Modak, P. Zanzonico, J.A. Carrasquillo, B.H. Kushner, K. Kramer, N.K. Cheung, S.M. Larson, N. Pandit-Taskar, Arsenic trioxide as a radiation sensitizer for 131I-Metaiodobenzylguanidine therapy: Results of a phase II study. J. Nucl. Med. 57, 231–237 (2016)

    Article  CAS  Google Scholar 

  11. G.X. Li, Q.L. Pei, Y. Gao, K.M. Liu, J.S. Nie, G. Han, Y.L. Qiu, W.P. Zhang, Protective effects of hepatocellular canalicular conjugate export pump (Mrp2) on sodium arsenite-induced hepatic dysfunction in rats. Exp. Toxicol. Pathol. 58, 447–453 (2007)

    Article  CAS  Google Scholar 

  12. Z. Gregus, A. Gyurasics, I. Csanaky, Biliary and urinary excretion of inorganic arsenic: Monomethylarsonous acid as a major biliary metabolite in rats. Toxicol. Sci. 56, 8–25 (2000)

    Article  Google Scholar 

  13. S. Zhang, C. Ma, H. Pang, F. Zeng, L. Cheng, B. Fang, J. Ma, Y. Shi, H. Hong, J. Chen, Z. Wang, J. Xia, Arsenic trioxide suppresses cell growth and migration via inhibition of miR-27a in breast cancer cells. Biochem. Biophys. Res. Commun. 469, 55–61 (2016)

    Article  CAS  Google Scholar 

  14. Y.W. Chang, M.W. Chen, C.F. Chiu, C.C. Hong, C.C. Cheng, M. Hsiao, C.A. Chen, L.H. Wei, J.L. Su, Arsenic trioxide inhibits CXCR4-mediated metastasis by interfering miR-520h/PP2A/NF-kappaB signaling in cervical cancer. Ann. Surg. Oncol. 21(Suppl 4), S687–S695 (2014)

    Article  Google Scholar 

  15. L. Tang, Y. Wang, H. Wang, B. Xu, H. Ji, G. Xu, X. Ge, Q. Li, L. Miao, Long noncoding-RNA component of mitochondrial RNA processing endoribonuclease is involved in the progression of cholangiocarcinoma by regulating microRNA-217. Cancer Sci. 110, 2166–2179 (2019)

    Article  CAS  Google Scholar 

  16. F. Xu, J.J. Yan, Y. Gan, Y. Chang, H.L. Wang, X.X. He, Q. Zhao, miR-885-5p negatively regulates Warburg effect by silencing hexokinase 2 in liver cancer. Mol. Ther. Nucleic Acids 18, 308–319 (2019)

  17. C. Li, X. Wang, Q. Song, MicroRNA 885-5p inhibits hepatocellular carcinoma metastasis by repressing AEG1. Onco. Targets Ther. 13, 981–988 (2020)

    Article  CAS  Google Scholar 

  18. S. Sen, G. Kundu, N. Mekhail, J. Castel, K. Misono, B. Healy, Myotrophin: Purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J. Biol. Chem. 265, 16635–16643 (1990)

    Article  CAS  Google Scholar 

  19. E.Y. Kim, S.S. Lee, J.H. Shin, S.H. Kim, D.H. Shin, S.Y. Baek, Anticancer effect of arsenic trioxide on cholangiocarcinoma: In vitro experiments and in vivo xenograft mouse model. Clin. Exp. Med. 14, 215–224 (2014)

    Article  CAS  Google Scholar 

  20. P.R. Subbarayan, B. Ardalan, In the war against solid tumors arsenic trioxide needs partners. J. Gastrointest Cancer 45, 363–371 (2014)

    Article  CAS  Google Scholar 

  21. J. Gao, G. Wang, J. Wu, Y. Zuo, J. Zhang, X. Jin, Skp2 expression is inhibited by arsenic trioxide through the upregulation of miRNA-330-5p in pancreatic cancer cells. Mol. Ther. Oncolytics 12, 214–223 (2019)

  22. X. Bao, T. Ren, Y. Huang, S. Wang, F. Zhang, K. Liu, B. Zheng, W. Guo, Induction of the mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma. J. Exp. Clin. Cancer Res. 35, 129 (2016)

    Article  Google Scholar 

  23. L. Zhu, F. Huang, G. Deng, W. Nie, W. Huang, H. Xu, S. Zheng, Z. Yi, T. Wan, MicroRNA-212 targets FOXA1 and suppresses the proliferation and invasion of intrahepatic cholangiocarcinoma cells. Exp. Ther. Med. 13, 2109 (2017)

    Article  Google Scholar 

  24. H. Li, Z.Q. Zhou, Z.R. Yang, D.N. Tong, J. Guan, B.J. Shi, J. Nie, X.T. Ding, B. Li, G.W. Zhou, Z.Y. Zhang, MicroRNA-191 acts as a tumor promoter by modulating the TET1-p53 pathway in intrahepatic cholangiocarcinoma. Hepatology 66, 136–151 (2017)

    Article  CAS  Google Scholar 

  25. E. Borgmastars, H.A. de Weerd, Z. Lubovac-Pilav, M. Sund, miRFA: an automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer. BMC Bioinf. 20, 393 (2019)

    Article  Google Scholar 

  26. Y. Liu, Z. Bao, W. Tian, G. Huang, miR-885-5p suppresses osteosarcoma proliferation, migration and invasion through regulation of beta-catenin. Oncol. Lett. 17, 1996–2004 (2019)

    CAS  PubMed  Google Scholar 

  27. E.A. Afanasyeva, P. Mestdagh, C. Kumps, J. Vandesompele, V. Ehemann, J. Theissen, M. Fischer, M. Zapatka, B. Brors, L. Savelyeva, V. Sagulenko, F. Speleman, M. Schwab, F. Westermann, MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival. Cell Death Differ. 18, 974–984 (2011)

    Article  CAS  Google Scholar 

  28. N.A. Hussein, Z.A. Kholy, M.M. Anwar, M.A. Ahmad, S.M. Ahmad, Plasma miR-22-3p, miR-642b-3p and miR-885-5p as diagnostic biomarkers for pancreatic cancer. J. Cancer Res. Clin. Oncol. 143, 83–93 (2017)

    Article  CAS  Google Scholar 

  29. J. Gui, Y. Tian, X. Wen, W. Zhang, P. Zhang, J. Gao, W. Run, L. Tian, X. Jia, Y. Gao, Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin. Sci. (Lond.). 120, 183–193 (2011)

    Article  CAS  Google Scholar 

  30. S.Q. Khan, D. Kelly, P. Quinn, J.E. Davies, L.L. Ng, Myotrophin is a more powerful predictor of major adverse cardiac events following acute coronary syndrome than N-terminal pro-B-type natriuretic peptide. Clin. Sci. (Lond). 112, 251–256 (2007)

    Article  CAS  Google Scholar 

  31. R.J. O'Brien, I. Loke, J.E. Davies, I.B. Squire, L.L. Ng, Myotrophin in human heart failure. J. Am. Coll. Cardiol. 42, 719–725 (2003)

    Article  CAS  Google Scholar 

  32. A. Jafarian, M. Taghikani, S. Abroun, A. Allahverdi, M. Lamei, N. Lakpour, M. Soleimani, The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and Anti-MiR-9. PLoS One 10, e0128650 (2015)

  33. Y. Li, X. Xu, Y. Liang, S. Liu, H. Xiao, F. Li, H. Cheng, Z. Fu, miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int. J. Clin. Exp. Pathol. 3, 254–264 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. M.A. Muniz Lino, Y. Palacios-Rodriguez, S. Rodriguez-Cuevas, V. Bautista-Pina, L.A. Marchat, E. Ruiz-Garcia, H. Astudillo-de la Vega, A.E. Gonzalez-Santiago, A. Flores-Perez, J. Diaz-Chavez, A. Carlos-Reyes, E. Alvarez-Sanchez, C. Lopez-Camarillo, Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. J. Proteomics 111, 198–211 (2014)

  35. B. Das, S. Gupta, A. Vasanji, Z. Xu, S. Misra, S. Sen, Nuclear co-translocation of myotrophin and p65 stimulates myocyte growth. Regulation by myotrophin hairpin loops J. Biol. Chem. 283, 27947–27956 (2008)

Download references

Funding

This work was supported by National 13th Five-Year key Research & Development plan precision medical project subproject (2017YFC 0908304) and the Key Medical Talents of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

LM, QL and QJ conceived the research. YW and QL drafted the manuscript. LM, QL and QJ critically reviewed and revised the manuscript. YW, WZ, LC and SX performed the experiments. LT and YY collected the clinical samples and analyzed the data. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Quanpeng Li, Qi Jiang or Lin Miao.

Ethics declarations

Ethics approval and consent to participate

This study has been conducted in accordance with ethical standards and according to the Declaration of Helsinki and national and international guidelines, and has been approved by the authors’ institutional review board. The study protocol was approved by the Medical Ethics Committee of Nanjing Medical University.

Consent for publication

Not applicable.

Disclosure statement

The authors have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

The filter of miRNAs: (A) Heatmap of differentially expressed microRNAs (B): Six microRNAs were selected as the detection target of cells and tissues according to the difference multiple.) (PNG 86 kb)

High Resolution (TIF 108 kb)

Fig. S2

The filtered mRNAs (PNG 82 kb)

High Resolution (TIF 123 kb)

Fig. S3

IC50 of the cells transfected with miR-196a-5p inhibitor or not: ((A) RBE and HCCC-9810 were transfected by scrambled or miR-196a-5p inhibitor, IC50 of 5-FU (top) or CDDP (bottom) in them were analyzed.) (PNG 157 kb)

High Resolution (TIF 185 kb)

Fig. S4

The effect of MTPN siRNAs (PNG 52 kb)

High Resolution (TIF 70 kb)

Fig. S5

The primers. (The samples of TCGA were available from: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) (PNG 20 kb)

High Resolution (TIF 43 kb)

Table S1

The CCA tissue patient group and characteristics. (PNG 20 kb)

High Resolution (TIF 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, W., Chen, L. et al. The ATO/miRNA-885-5p/MTPN axis induces reversal of drug-resistance in cholangiocarcinoma. Cell Oncol. 44, 907–916 (2021). https://doi.org/10.1007/s13402-021-00610-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00610-3

Keywords

Navigation