Skip to main content
Log in

Crystalline silica induces macrophage necrosis and causes subsequent acute pulmonary neutrophilic inflammation

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Crystalline silica (CS), an airborne particulate, is a major global occupational health hazard. While it is known as an important pathogenic factor in many severe lung diseases, the underlying mechanisms of its toxicity are still unclear. In the present study, we found that intra-tracheal instillation of CS caused rapid emergence of necrotic alveolar macrophages. Cell necrosis was a consequence of the release of cathepsin B in CS-treated macrophages, which caused dysfunction of the mitochondrial membrane. Damage to mitochondria disrupted Na+/K+ ATPase activity in macrophages, leading to intracellular sodium overload and the subsequent cell necrosis. Further studies indicate that CS-induced macrophage necrosis and the subsequent release of mitochondrial DNA could trigger the recruitment of neutrophils in the lung, which was regulated by the TLR9 signaling pathway. In conclusion, our results suggest a novel mechanism whereby CS leads to rapid macrophage necrosis through cathepsin B release, following the leakage of mitochondrial DNA as a key event in the induction of pulmonary neutrophilic inflammation. This study has important implications for the early prevention and treatment of diseases induced by CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Bai J, Cederbaum AI. Mitochondrial catalase and oxidative injury. Biol Signals Recept. 2001;10:189–99.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Boeynaems JM, Communi D. Modulation of inflammation by extracellular nucleotides. J Invest Dermatol. 2006;126:943–4.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanova A, Petrushanko IY, Hernansanz-Agustin P, Martinez-Ruiz A. “Oxygen sensing” by Na K-ATPase: these miraculous thiols. Front Physiol. 2016;7:314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown T. Silica exposure, smoking, silicosis and lung cancer--complex interactions. Occup Med (Lond). 2009;59:89–95.

    Article  Google Scholar 

  • Brown JM, Pfau JC, Pershouse MA, Holian A. Silica, apoptosis, and autoimmunity. J Immunotoxicol. 2005;1:177–87.

    Article  PubMed  CAS  Google Scholar 

  • Bundschuh DS, Uhlig S, Wendel A. Isolation of rat primary lung cells: characterization of an improved method. Exp Toxicol Pathol. 1996;48:512–4.

    Article  CAS  PubMed  Google Scholar 

  • Carneiro PJ, Clevelario AL, Padilha GA, Silva JD, Kitoko JZ, Olsen PC, et al. Bosutinib therapy ameliorates lung inflammation and fibrosis in experimental silicosis. Front Physiol. 2017;8:159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, et al. The Nalp3 inflammasome is essential for the development of silicosis. P Natl Acad Sci USA. 2008;105:9035–40.

    Article  CAS  Google Scholar 

  • Castelblanco M, Lugrin J, Ehirchiou D, Nasi S, Ishii I, So A, et al. Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J Biol Chem. 2018;293:2546–57.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yao Y, Su X, Shi Y, Song X, Xie L, et al. Comparative RNA-Seq transcriptome analysis on silica induced pulmonary inflammation and fibrosis in mice silicosis model. Journal of applied toxicology : JAT. 2018;38:773–82.

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Dai T, He X, Zhang Z, Xie F, Wang S, et al. The interactions between cGAS-STING pathway and pathogens. Signal transduction and targeted therapy. 2020;5:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox LA Jr. An exposure-response threshold for lung diseases and lung cancer caused by crystalline silica. Risk Anal. 2011;31:1543–60.

    Article  PubMed  Google Scholar 

  • D’Hulst AI, Maes T, Bracke KR, Demedts IK, Tournoy KG, Joos GF, et al. Cigarette smoke-induced pulmonary emphysema in scid-mice. Is the acquired immune system required? Respir Res. 2005;6:147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis MJ, Swanson JA. Technical advance: caspase-1 activation and IL-1beta release correlate with the degree of lysosome damage, as illustrated by a novel imaging method to quantify phagolysosome damage. J Leukoc Biol. 2010;88:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16:663–9.

    Article  CAS  PubMed  Google Scholar 

  • Figtree GA, Keyvan Karimi G, Liu CC, Rasmussen HH. Oxidative regulation of the Na(+)-K(+) pump in the cardiovascular system. Free Radic Biol Med. 2012;53:2263–8.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020 Mar 19;180:1044–66.

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa A, Kambe N, Saito M, Nishikomori R, Tanizaki H, Kanazawa N, et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. 2007;109:2903–11.

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009;9:353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha HC, Snyder SH. Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A. 1999;96:13978–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton RF Jr, Thakur SA, Holian A. Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med. 2008;44:1246–58.

    Article  CAS  PubMed  Google Scholar 

  • Han KS, Kang HJ, Kim EY, Yoon WJ, Sohn S, Kwon HJ, et al. 1,2-bis(2-Aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid induces caspase-mediated apoptosis and reactive oxygen species-mediated necrosis in cultured cortical neurons. J Neurochem. 2001;78:230–9.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson LS, Lima H Jr, Goldberg MF, Gocheva V, Tsiperson V, Sutterwala FS, et al. Cathepsin-mediated necrosis controls the adaptive immune response by Th2 (T helper type 2)-associated adjuvants. J Biol Chem. 2013;288:7481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway C. Immunogenicity signals 1,2,3 ... and 0. Immunol Today. 1989;10:283–6.

    Article  CAS  PubMed  Google Scholar 

  • Kachuri L, Villeneuve PJ, Parent ME, Johnson KC, Harris SA. Occupational exposure to crystalline silica and the risk of lung cancer in Canadian men. Int J Cancer. 2014;135:138–48.

    Article  CAS  PubMed  Google Scholar 

  • Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77:598–625.

    Article  CAS  PubMed  Google Scholar 

  • Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008;8:279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011;32:157–64.

    Article  CAS  PubMed  Google Scholar 

  • Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer discovery. 2020;10:26–39.

    Article  CAS  PubMed  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997;387:493–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Kim MK, Park KS, Shin EH, Bae YS. Group IB secretory phospholipase A2 stimulates leukotriene B4 production by a unique mechanism in human neutrophils. Biochem Biophys Res Commun. 2005;334:500–8.

    Article  CAS  PubMed  Google Scholar 

  • Leung CC, Yu IT, Chen W. Silicosis. Lancet. 2012;379:2008–18.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Itagaki K, Sandler N, Gallo D, Galenkamp A, Kaczmarek E, et al. Mitochondrial damage-associated molecular patterns from fractures suppress pulmonary immune responses via formyl peptide receptors 1 and 2. J Trauma Acute Care Surg. 2015;78:272–9 discussion 9-81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Du S, Lu Y, Lu X, Liu F, Chen Y, et al. Blocking the 4-1BB pathway ameliorates crystalline silica-induced lung inflammation and fibrosis in mice. Theranostics. 2016;6:2052–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Li C, Zhang Y, He X, Chen X, Zeng X, et al. Targeting mechanics-induced fibroblast activation through CD44-RhoA-YAP pathway ameliorates crystalline silica-induced silicosis. Theranostics. 2019;9:4993–5008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CC, Garcia A, Mahmmoud YA, Hamilton EJ, Galougahi KK, Fry NA, et al. Susceptibility of beta1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump. J Biol Chem. 2012;287:12353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manfredi AA, Rovere-Querini P. The mitochondrion--a Trojan horse that kicks off inflammation? N Engl J Med. 2010;362:2132–4.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  • Morinaga Y, Yanagihara K, Nakamura S, Hasegawa H, Seki M, Izumikawa K, et al. Legionella pneumophila induces cathepsin B-dependent necrotic cell death with releasing high mobility group box 1 in macrophages. Respir Res. 2010;11:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy AJ, Hoover JC. Inhibition of the Na,K-ATPase by fluoride. Parallels with its inhibition of the sarcoplasmic reticulum CaATPase. J Biol Chem. 1992;267:16995–700.

    Article  CAS  PubMed  Google Scholar 

  • Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis. 2005;182:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Persson HL. Iron-dependent lysosomal destabilization initiates silica-induced apoptosis in murine macrophages. Toxicol Lett. 2005;159:124–33.

    Article  CAS  PubMed  Google Scholar 

  • Peter ME, Kubarenko AV, Weber AN, Dalpke AH. Identification of an N-terminal recognition site in TLR9 that contributes to CpG-DNA-mediated receptor activation. J Immunol. 2009;182:7690–7.

    Article  CAS  PubMed  Google Scholar 

  • Petrushanko IY, Yakushev S, Mitkevich VA, Kamanina YV, Ziganshin RH, Meng X, et al. S-glutathionylation of the Na,K-ATPase catalytic alpha subunit is a determinant of the enzyme redox sensitivity. J Biol Chem. 2012;287:32195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineda-Torra I, Gage M, de Juan A, Pello OM. Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages. Methods Mol Biol. 2015;1339:101–9.

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Liang X, Yang J, Zhao C, Nie W, Liu L, et al. Hyaluronan reduces cationic liposome-induced toxicity and enhances the antitumor effect of targeted gene delivery in mice. ACS Appl Mater Interfaces. 2018;10:32006–16.

    Article  CAS  PubMed  Google Scholar 

  • Raha S, Robinson BH. Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet. 2001;106:62–70.

    Article  CAS  PubMed  Google Scholar 

  • Riteau N, Baron L, Villeret B, Guillou N, Savigny F, Ryffel B, et al. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis. 2012;3:e403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007;28:429–36.

    Article  CAS  PubMed  Google Scholar 

  • Satpathy SR, Jala VR, Bodduluri SR, Krishnan E, Hegde B, Hoyle GW, et al. Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth. Nat Commun. 2015;6:7064.

    Article  CAS  PubMed  Google Scholar 

  • Sester DP, Brion K, Trieu A, Goodridge HS, Roberts TL, Dunn J, et al. CpG DNA activates survival in murine macrophages through TLR9 and the phosphatidylinositol 3-kinase-Akt pathway. J Immunol. 2006;177:4473–80.

    Article  CAS  PubMed  Google Scholar 

  • Su L, Quade B, Wang H, Sun L, Wang X, Rizo J. A plug release mechanism for membrane permeation by MLKL. Structure. 2014;22:1489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Yang F, Yan J, Li Q, Wei Z, Feng H, et al. New anti-fibrotic mechanisms of n-acetyl-seryl-aspartyl-lysyl-proline in silicon dioxide-induced silicosis. Life Sci. 2010;87:232–9.

    Article  CAS  PubMed  Google Scholar 

  • Takato H, Yasui M, Ichikawa Y, Waseda Y, Inuzuka K, Nishizawa Y, et al. The specific chymase inhibitor TY-51469 suppresses the accumulation of neutrophils in the lung and reduces silica-induced pulmonary fibrosis in mice. Exp Lung Res. 2011;37:101–8.

    Article  CAS  PubMed  Google Scholar 

  • Thakur SA, Hamilton RF Jr, Holian A. Role of scavenger receptor a family in lung inflammation from exposure to environmental particles. J Immunotoxicol. 2008;5:151–7.

    Article  CAS  PubMed  Google Scholar 

  • Tu HC, Ren D, Wang GX, Chen DY, Westergard TD, Kim H, et al. The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc Natl Acad Sci U S A. 2009;106:1093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–47.

    Article  CAS  Google Scholar 

  • Wang B, Zhang L, Bae SC, Granick S. Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci U S A. 2008;105:18171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54:133–46.

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, et al. Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Res. 2015;25:237–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtala A, Bonora M, Malinska D, Pinton P, Duszynski J, Wieckowski MR. Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol. 2014;542:243–62.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Shapiro AP, Haller S, Katragadda V, Liu L, Tian J, et al. Involvement of reactive oxygen species in a feed-forward mechanism of Na/K-ATPase-mediated signaling transduction. J Biol Chem. 2013;288:34249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Shapiro AP, Mopidevi BR, Chaudhry MA, Maxwell K, Haller ST, et al. Protein carbonylation of an amino acid residue of the Na/K-ATPase alpha1 subunit determines Na/K-ATPase signaling and sodium transport in renal proximal tubular cells. J Am Heart Assoc. 2016;5:e003675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasuda K, Richez C, Uccellini MB, Richards RJ, Bonegio RG, Akira S, et al. Requirement for DNA CpG content in TLR9-dependent dendritic cell activation induced by DNA-containing immune complexes. J Immunol. 2009;183:3109–17.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Jiang R, Yang X, Guo H, Fang S, Zhang Y, et al. circRNA mediates silica-induced macrophage activation Via HECTD1/ZC3H12A-dependent ubiquitination. Theranostics. 2018;8:575–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Sichuan Science and Technology Program (No. 2020YFS0217). This work was supported by the full-time postdoctoral research and development fund of Sichuan University (No. 20826041D4048). This work was supported by the full-time postdoctoral research and development fund of West China Hospital of Sichuan University (No. 2020HXBH059). This work is supported by the National Key Research and Development Program of China (No. 2016YFA0201402), the National Natural Science Foundation of China (No. 81602492), and by the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (No. 2018ZX09733001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiawei Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All animal experiments and procedures were approved by the Animal Experimental Ethics Committee of State Key Laboratory Biotherapy (SKLB), Sichuan University.

Consent to participate

Not applicable.

Consent for publication

The authors declare consent for publication.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, W., Lan, T., Yuan, X. et al. Crystalline silica induces macrophage necrosis and causes subsequent acute pulmonary neutrophilic inflammation. Cell Biol Toxicol 38, 591–609 (2022). https://doi.org/10.1007/s10565-021-09620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-021-09620-1

Keywords

Navigation