Skip to main content
Log in

Modelling of nanobubbles at the liquid-solid interface in water and oil

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A model based on molecular dynamics is suggested for description of the shape of nanobubble on the liquid-solid interface. The model results are in good agreement with the known experimental AFM measurements. Nanobubbles in water and in oil are studied. The evolution, moving and interactions of nanobubbles are considered. The influence of different external factors (temperature of the liquid, temperature of the substrate, the gradient of temperature, external pressure (depth of the liquid)) and internal characteristics (surface tension, density) on the nanobubbles evolution and behaviour is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Lohse D, Zhang X (2015) Surface nanobubbles and nanodroplets. Rev Mod Phys 87(3):981–1035. https://doi.org/10.1103/RevModPhys

    Article  MathSciNet  Google Scholar 

  2. Ball P (2003) How to keep dry in water. Nature 423:25–26

    Article  Google Scholar 

  3. Vinogradova O, Bunkin NF, Churaev NV, Kiseleva OA, Lobeyev AV, Ninham BW (1995) Submicrocavity structure of water between hydrophobic and hydrophilic walls as revealed by optical cavitation. J Colloid Interface Sci 173:443–447

    Article  Google Scholar 

  4. Tyrrell JWG, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett 87:2968

    Article  Google Scholar 

  5. Attard P (2003) Nanobubbles and the hydrophobic attraction. Adv Colloid Interface Sci 104:75–91

    Article  Google Scholar 

  6. Holmberg M, Kdühle A, Garnaes J, Morch KA, Boisen A (2003) Nanobubble trouble on gold surfaces. Langmuir 19:10510–10513

    Article  Google Scholar 

  7. Simonsen A, Hansen P, Klösgen BJJ (2004) Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. Colloid Interface Sci 273:291–299

    Article  Google Scholar 

  8. Zhang XH, Maeda N, Craig VSJ (2006) Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions. Langmuir 22:5025–5035

    Article  Google Scholar 

  9. Yang S, Dammer S, Bremond N, Zandvliet HJW, Kooij ES, Lohse D (2007) Characterization of nanobubbles on hydrophobic surfaces in water. Langmuir 23(2007):7072–7077

    Article  Google Scholar 

  10. Yang S, Kooij ES, Poelsema B, Lohse D, Zandvliet HJW (2008) Correlation between geometry and nanobubble distribution on HOPG surface. Europhys Lett 81(64):006

    Google Scholar 

  11. Zhang XH, Quinn A, Ducker WA (2008) Nanobubbles at the interface between water and a hydrophobic solid. Langmuir 24:4756–4764

    Article  Google Scholar 

  12. Lou ST, Ouyang ZQ, Zhang Y, Li XJ, Hu J, Li MQ, Yang FJ (2000) Nanobubbles on solid surface imaged by atomic force microscopy. J Vac Sci Technol B 18:2573–2575

    Article  Google Scholar 

  13. Ishida N, Inoue T, Miyahara M, Higashitani K (2000) Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 16:6377–6380

    Article  Google Scholar 

  14. Zhang X, Lohse D (2014) Perspectives on surface nanobubbles. Biomicrofluidics 8:64

    Google Scholar 

  15. Maheshwari S, van der Hoef M, Zhang X, Lohse D (2016) Stability of surface nanobubbles: a molecular dynamics study. Langmuir 32(43):11116–11122

    Article  Google Scholar 

  16. Frenkel YI (1948) Kinetic theory of liquids. GITTL, Moscow

    MATH  Google Scholar 

  17. Galperin GA, Zemlyakov AN (1990) Mathematical billiards. Nauka, Moscow

    Google Scholar 

  18. Brenner MP, Lohse D (2008) Dynamic equilibrium mechanism for surface nanobubble stabilization. Phys Rev Lett 101(1–4):6168

    Google Scholar 

  19. Mezger M, Reichert H, Schöder S, Okasinski J, Schröder H, Dosch H, Palms D, Ralston J, Honkimäki V (2006) High-resolution in situ x-ray study of the hydrophobic gap at the water-octadecyl-trichlorosilane interface. Proc Natl Acad Sci USA 103:18401–18404

    Article  Google Scholar 

  20. Poynor A, Hong L, Robinson IK, Granick S, Zhang Z, Fenter PA (2006) How water meets a hydrophobic surface. Phys Rev Lett 97:132

    Article  Google Scholar 

  21. Mezger M, Schöder S, Reichert H, Schröder H, Okasinski J, Honkimäki V, Ralston J, Bilgram J, Roth R, Dosch H (2008) Water and ice in contact with octadecyl-trichlorosilane functionalized surfaces: a high resolution x-ray reflectivity study. J Chem Phys 128:2569

    Article  Google Scholar 

  22. Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18:1505–1509

    Article  Google Scholar 

  23. Luo L, White HS (2013) Electrogeneration of single nanobubbles at sub-50- nm-radius platinum nanodisk electrodes. Langmuir 29(35):11169–11175

    Article  Google Scholar 

  24. Mao Y, Zhang Y (2013) Nonequilibrium molecular dynamics simulation of nanobubble growth and annihilation in liquid water. Nanoscale Microscale Thermophys Eng 17(2):79–91

    Article  Google Scholar 

  25. Petsev ND, Shell MS, Leal LG (2013) Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence. Phys Rev E 88(1):94111

    Article  Google Scholar 

  26. Lauga E, Brenner MP, Stone HA (2005) Handbook of experimental fluid dynamics. In: Foss CJ, YA (Eds)Springer, New York

  27. Fan TH, Vinogradova OI (2005) Hydrodynamic resistance of close-approached slip surfaces with a nanoasperity or an entrapped nanobubble. Phys Rev E 72:56863

    Google Scholar 

  28. Vinogradova OI, Yakubov GE (2006) Surface roughness and hydrodynamic boundary conditions. Phys Rev E 73:045302(R)

    Article  Google Scholar 

  29. Barbir F (2005) Pem electrolysis for production of hydrogen from renewable energy sources. Sol Energy 78(5):661–669

    Article  Google Scholar 

  30. Schönherr H, Hain N, Walczyk W, Wesner D, Druzhinin SI (2016) Surface nanobubbles studied by atomic force microscopy techniques: facts, fiction, and open questions. Jpn J Appl Phys 55:08NA01

    Article  Google Scholar 

  31. Rudyak V, Belkin A (2018) Molecular dynamics simulation of fluid viscosity in nanochannels. Nanosyst Phys Chem Math 9(3):349–355. https://doi.org/10.17586/2220-8054-2018-9-3-349-355

    Article  Google Scholar 

  32. Lagarkov LN, Sergeev VM (1978) Method of molecular dynamics in statistical physics. Sov Phys Uspekhi 125(3):409–448

    Google Scholar 

Download references

Funding

This work was partially financially supported by the Government of the Russian Federation (grant 08-08), grant 16-11-10330 of Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Y. Popov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorontsov, I.V., Chivilikhin, S.A. & Popov, I.Y. Modelling of nanobubbles at the liquid-solid interface in water and oil. Meccanica 56, 2517–2532 (2021). https://doi.org/10.1007/s11012-021-01393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01393-5

Keywords

Navigation