Skip to main content
Log in

Microindentation of Cartilage Before and After Articular Loading in a Bioreactor: Assessment of Length-Scale Dependency Using Two Analysis Methods

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Microindentation is a technique with high sensitivity and spatial resolution, allowing for measurements at small-scale indentation depths. Various methods of indentation analysis to determine output properties exist.

Objective

Here, the Oliver-Pharr Method and Hertzian Method were compared for stiffness analyses of articular cartilage at varying length-scales before and after bioreactor loading.

Methods

Using three different conospherical tips with varying radii (20, 100, 793.75 µm), a bioreactor-indenter workflow was performed on cartilage explants to assess changes in stiffness due to articular loading. For all data, both the Oliver-Pharr Method and Hertzian Method were applied for indentation analysis.

Results

The reduced moduli calculated by the Hertzian Method were found to be similar to those of the Oliver-Pharr Method when the 20 µm tip size was used. The reduced moduli calculated using the Hertzian Method were found to be consistent across the varying length-scales, whereas for the Oliver-Pharr Method, adhesion/suction led to the largest tip exhibiting an increased average reduced modulus compared to the two smaller tips. Loading induced stiffening of articular cartilage was observed consistently, regardless of tip size or indentation analysis applied.

Conclusions

Overall, geometric linearity is preserved across all tip sizes for the Hertzian Method and may be assumed for the two smaller tip sizes using the Oliver-Pharr Method. These findings further validate the previously described stiffening response of the superficial zone of cartilage after articular loading and demonstrate that the finding is length-scale independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kempson GE, Freeman MAR, Swanson SAV (1971) The determination of a creep modulus for articular cartilage from indentation tests on the human femoral head. J Biomech 4:239–250. https://doi.org/10.1016/0021-9290(71)90030-3

    Article  Google Scholar 

  2. Appleyard R, Ghosh P, Swain M (1999) Biomechanical, histological and immunohistological studies of patellar cartilage in an ovine model of osteoarthritis induced by lateral meniscectomy. In: Osteoarthritis and cartilage. https://pubmed.ncbi.nlm.nih.gov/10329303/. Accessed 16 Oct 2020

  3. Ferguson VL, Bushby AJ, Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 203:191–202. https://doi.org/10.1046/j.1469-7580.2003.00193.x

    Article  Google Scholar 

  4. Hyttinen MM, Töyräs J, Lapveteläinen T et al (2001) Inactivation of one allele of the type II collagen gene alters the collagen network in murine articular cartilage and makes cartilage softer. Ann Rheum Dis 60:262–268. https://doi.org/10.1136/ard.60.3.262

    Article  Google Scholar 

  5. Han L, Grodzinsky AJ, Ortiz C (2011) Nanomechanics of the Cartilage Extracellular Matrix. Annu Rev Mater Res 41:133–168. https://doi.org/10.1146/annurev-matsci-062910-100431

    Article  Google Scholar 

  6. Han G, Hess C, Eriten M, Henak CR (2018) Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage. J Mech Behav Biomed Mater 84:28–34. https://doi.org/10.1016/j.jmbbm.2018.04.024

    Article  Google Scholar 

  7. Mattice JM, Lau AG, Oyen ML, Kent RW (2006) Spherical indentation load-relaxation of soft biological tissues. J Mater Res 21:2003–2010. https://doi.org/10.1557/jmr.2006.0243

    Article  Google Scholar 

  8. M Oyen 2015 Nanoindentation of Hydrated Materials and Tissues. Curr Opin Solid State Mater Sci 19. https://doi.org/10.1016/j.cossms.2015.03.001

  9. Wahlquist JA, DelRio FW, Randolph MA et al (2017) Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage. Acta Biomater 64:41–49. https://doi.org/10.1016/j.actbio.2017.10.003

    Article  Google Scholar 

  10. McGann ME, Bonitsky CM, Ovaert TC, Wagner DR (2014) The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation. J Mech Behav Biomed Mater 34:264–272. https://doi.org/10.1016/j.jmbbm.2014.02.013

    Article  Google Scholar 

  11. Moshtagh PR, Korthagen NM, van Rijen MHP et al (2018) Effects of non-enzymatic glycation on the micro- and nano-mechanics of articular cartilage. J Mech Behav Biomed Mater 77:551–556. https://doi.org/10.1016/j.jmbbm.2017.09.035

    Article  Google Scholar 

  12. Yuh C, Laurent MP, Espinosa-Marzal RM et al (2021) Transient stiffening of cartilage during joint articulation: A microindentation study. J Mech Behav Biomed Mater 113:104113. https://doi.org/10.1016/j.jmbbm.2020.104113

    Article  Google Scholar 

  13. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  14. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments. J Biomech Eng 102:73–84. https://doi.org/10.1115/1.3138202

    Article  Google Scholar 

  15. Garcia M, Schulze KD, O’Bryan CS et al (2017) Eliminating the surface location from soft matter contact mechanics measurements. Tribology - Materials, Surfaces & Interfaces 11:187–192. https://doi.org/10.1080/17515831.2017.1397908

    Article  Google Scholar 

  16. Han G, Eriten M (2018) Effect of relaxation-dependent adhesion on pre-sliding response of cartilage. R Soc Open Sci 5:172051. https://doi.org/10.1098/rsos.172051

    Article  Google Scholar 

  17. Kohn JC, Ebenstein DM (2013) Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels. J Mech Behav Biomed Mater 20:316–326. https://doi.org/10.1016/j.jmbbm.2013.02.002

    Article  Google Scholar 

  18. Ciavarella M, Joe J, Papangelo A, Barber JR (2019) The role of adhesion in contact mechanics. J R Soc Interface 16. https://doi.org/10.1098/rsif.2018.0738

  19. Budday S, Nay R, de Rooij R et al (2015) Mechanical properties of gray and white matter brain tissue by indentation. J Mech Behav Biomed Mater 46:318–330. https://doi.org/10.1016/j.jmbbm.2015.02.024

    Article  Google Scholar 

  20. Andriacchi TP, Koo S, Scanlan SF (2009) Gait Mechanics Influence Healthy Cartilage Morphology and Osteoarthritis of the Knee. J Bone Joint Surg Am 91:95–101. https://doi.org/10.2106/JBJS.H.01408

    Article  Google Scholar 

  21. Guilak F (2011) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25:815–823. https://doi.org/10.1016/j.berh.2011.11.013

    Article  Google Scholar 

  22. Ateshian GA (2009) The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication. J Biomech 42:1163–1176. https://doi.org/10.1016/j.jbiomech.2009.04.040

    Article  Google Scholar 

  23. Moore AC, Burris DL (2017) Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr Cartil 25:99–107. https://doi.org/10.1016/j.joca.2016.09.018

    Article  Google Scholar 

  24. Wimmer MA, Grad S, Kaup T et al (2004) Tribology Approach to the Engineering and Study of Articular Cartilage. Tissue Eng 10:1436–1445. https://doi.org/10.1089/ten.2004.10.1436

    Article  Google Scholar 

  25. Hertz H (1882) Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 1882:156–171. https://doi.org/10.1515/crll.1882.92.156

    Article  MATH  Google Scholar 

  26. Johnson KL (1985) Contact Mechanics. In: Cambridge Core. /core/books/contact-mechanics/E3707F77C2EBCE727C3911AFBD2E4AC2. Accessed 16 Apr 2020

  27. Tabor D (1951) The Hardness of Metals. Clarendon Press, Oxford

    Google Scholar 

  28. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57. https://doi.org/10.1016/0020-7225(65)90019-4

    Article  MathSciNet  MATH  Google Scholar 

  29. Oyen ML (2013) Nanoindentation of Biological and Biomimetic Materials. Exp Tech 37:73–87. https://doi.org/10.1111/j.1747-1567.2011.00716.x

    Article  Google Scholar 

  30. Grad S, Gogolewski S, Alini M, Wimmer MA (2006) Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds. Tissue Eng 12:3171–3179. https://doi.org/10.1089/ten.2006.12.3171

    Article  Google Scholar 

  31. Chen T, Wang H, Warren R, Maher S (2017) Loss of ACL function leads to alterations in tibial plateau common dynamic contact stress profiles. J Biomech 61:275–279. https://doi.org/10.1016/j.jbiomech.2017.07.024

    Article  Google Scholar 

  32. Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am 64:88–94

    Article  Google Scholar 

  33. Mow VC, Gibbs MC, Lai WM et al (1989) Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J Biomech 22:853–861. https://doi.org/10.1016/0021-9290(89)90069-9

    Article  Google Scholar 

  34. Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15:499–506. https://doi.org/10.1002/jor.1100150404

    Article  Google Scholar 

  35. Waldstein W, Perino G, Gilbert SL et al (2016) OARSI osteoarthritis cartilage histopathology assessment system: A biomechanical evaluation in the human knee. J Orthop Res 34:135–140. https://doi.org/10.1002/jor.23010

    Article  Google Scholar 

  36. Basalo IM, Mauck RL, Kelly T-AN et al (2004) Cartilage interstitial fluid load support in unconfined compression following enzymatic digestion. J Biomech Eng 126:779–786. https://doi.org/10.1115/1.1824123

    Article  Google Scholar 

  37. Hosseini SM, Veldink MB, Ito K, van Donkelaar CC (2013) Is collagen fiber damage the cause of early softening in articular cartilage? Osteoarthr Cartil 21:136–143. https://doi.org/10.1016/j.joca.2012.09.002

    Article  Google Scholar 

  38. Khoshgoftar M, Torzilli PA, Maher SA (2018) Influence of the Pericellular and Extracellular Matrix Structural Properties on Chondrocyte Mechanics. J Orthop Res 36:721–729. https://doi.org/10.1002/jor.23774

    Article  Google Scholar 

  39. Nia HT, Han L, Li Y et al (2011) Poroelasticity of Cartilage at the Nanoscale. Biophys J 101:2304–2313. https://doi.org/10.1016/j.bpj.2011.09.011

    Article  Google Scholar 

  40. Bolshakov A, Pharr GM (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13:1049–1058. https://doi.org/10.1557/JMR.1998.0146

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Tim Ovaert (University of Notre Dame) for lending us the large alumina spherical tip, and Steven Mell and Michel Laurent for statistical input. This work was in part funded by the National Institutes of Health R01 AR066635 (PI S. Maher, site co-PI M.A.W.).

Funding

The research leading to these results received funding from the National Institutes of Health under Grant Agreement R01 AR066635.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yuh.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuh, C., O’Bryan, C.S., Angelini, T.E. et al. Microindentation of Cartilage Before and After Articular Loading in a Bioreactor: Assessment of Length-Scale Dependency Using Two Analysis Methods. Exp Mech 61, 1069–1080 (2021). https://doi.org/10.1007/s11340-021-00742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-021-00742-5

Keywords

Navigation