Skip to main content

Advertisement

Log in

Biocatalyst physiology and interplay: a protagonist of MFC operation

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFC) have been foreseen as a sustainable renewable energy resource to meet future energy demand. In the past, several studies have been executed in both benchtop and pilot scale to produce electrical energy from wastewater. The key role players in this technology that leads to the operation are microbes, mainly bacteria. The dominant among them is termed as “exoelectrogens” that have the capability to produce and transport electron by utilizing waste source. The current review focuses on such electrogenic bacteria’s involvement for enhanced power generation of MFC. The pathway of electron transfer in their cell along and its conduction to the extracellular environment of the MFC system are critically discussed. The interaction of the microbes in various MFC operational conditions, including the role of substrate and solid electron acceptors, i.e., anode, external resistance, temperature, and pH, was also discussed in depth along with biotechnological advancement and future research perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860

    Article  CAS  Google Scholar 

  • Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 9:109

    Article  CAS  Google Scholar 

  • Aklujkar M, Coppi M, Leang C et al (2013) Proteins involved in electron transfer to Fe (III) and Mn (IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology 159:515–535

    Article  CAS  Google Scholar 

  • Babauta JT, Nguyen HD, Beyenal H (2011) Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Environ Sci Technol 45:6654–6660

    Article  CAS  Google Scholar 

  • Bellin DL, Sakhtah H, Rosenstein JK et al (2014) Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat Commun 5:1–10

    Article  CAS  Google Scholar 

  • Biffinger JC, Pietron J, Bretschger O, Nadeau LJ, Johnson GR, Williams CC, Nealson KH, Ringeisen BR (2008) The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens Bioelectron 24:900–905

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  Google Scholar 

  • Borole AP, Hamilton CY, Vishnivetskaya TA, Leak D, Andras C, Morrell-Falvey J, Keller M, Davison B (2009) Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. J Power Sources 191:520–527

    Article  CAS  Google Scholar 

  • Butler JE, Young ND, Lovley DR (2010) Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11:40

    Article  CAS  Google Scholar 

  • Cai WF, Geng JF, Pu KB, Ma Q, Jing DW, Wang YH, Chen QY, Liu H (2018) Investigation of a two-dimensional model on microbial fuel cell with different biofilm porosities and external resistances. Chem Eng J 333:572–582

    Article  CAS  Google Scholar 

  • Carmona Martinez AA, Harnisch F, Kuhlicke U et al (2013) Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry 93:23–29

    Article  CAS  Google Scholar 

  • Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Kumar G, Mohan SV, et al (2020) Microbial electro-remediation (MER) of hazardous waste in aid of sustainable energy generation and resource recovery. Environ Technol Innov p.100997.

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  CAS  Google Scholar 

  • Chen W, Liu XY, Qian C, Song XN, Li WW, Yu HQ (2015) An UV–vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics. Biosens Bioelectron 64:25–29

    Article  CAS  Google Scholar 

  • Cheng S, Xing D, Logan BE (2011) Electricity generation of single chamber microbial fuel cells at low temperatures. Biosens Bioelectron 26:1913–1917

    Article  CAS  Google Scholar 

  • Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187

    Article  CAS  Google Scholar 

  • Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474

    Article  CAS  Google Scholar 

  • Dhundale V, Hemke V, Desai D et al (2020) Evaluation of bioelectricity productivity using alkaliphilic Bacillus alkalogaya BW2 (1) as a possible exoelectrogens for improvement of microbial fuel cell performance. J Appl Biol Biotechnol 8:69–75

    Article  CAS  Google Scholar 

  • Du Q, An J, Li J et al (2017) Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells. J Power Sources 343:477–482

    Article  CAS  Google Scholar 

  • El-Naggar MY, Gorby YA, Xia W et al (2008) The molecular density of states in bacterial nanowires. Biophys J 95:L10–L12

    Article  CAS  Google Scholar 

  • El-Naggar MY, Wanger G, Leung KM et al (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. P Natl Acad Sci USA 107:18127–18131

    Article  CAS  Google Scholar 

  • Engel C, Schattenberg F, Dohnt K, Schröder U, Müller S, Krull R (2019) Long-term behavior of defined mixed cultures of Geobacter sulfurreducens and Shewanella oneidensis in bioelectrochemical systems. Front Bioeng Biotechnol 7:60

    Article  Google Scholar 

  • Fernandez-Merino MJ, Guardia L, Paredes JI et al (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432

    Article  CAS  Google Scholar 

  • Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR (2009) Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ Sci 2:113–119

    Article  CAS  Google Scholar 

  • Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603

    Article  CAS  Google Scholar 

  • Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101:1233–1238

    Article  CAS  Google Scholar 

  • Fu Q, Kobayashi H, Kawaguchi H, Wakayama T, Maeda H, Sato K (2013) A thermophilic Gram-negative nitrate-reducing bacterium, Calditerrivibrio nitroreducens, exhibiting electricity generation capability. Environ Sci Technol 47:12583–12590

    Article  CAS  Google Scholar 

  • Fu Q, Fukushima N, Maeda H, Sato K, Kobayashi H (2015) Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C. Biosci Biotechnol Biochem 79:1200–1206

    Article  CAS  Google Scholar 

  • Gadkari S, Fontmorin JM, Yu E, Sadhukhan J (2020) Influence of temperature and other system parameters on microbial fuel cell performance: numerical and experimental investigation. Chem Eng J 388:124176

    Article  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    Article  CAS  Google Scholar 

  • Gorby Y, McLean J, Korenevsky A et al (2008) Redox-reactive membrane vesicles produced by Shewanella. Geobiology 6:232–241

    Article  CAS  Google Scholar 

  • Ha PT, Tae B, Chang IS (2008) Performance and bacterial consortium of microbial fuel cell fed with formate. Energ Fuels 22:164–168

    Article  CAS  Google Scholar 

  • Han S, Gao XY, Ying HJ, Zhou CC (2016) NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells. Green Chem 18:2473–2478

    Article  CAS  Google Scholar 

  • He CS, Mu ZX, Yang HY, Wang YZ, Mu Y, Yu HQ (2015) Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: a mini-review. Chemosphere 140:12–17

    Article  CAS  Google Scholar 

  • Holkar CR, Arora H, Halder D, Pinjari DV (2018) Biodegradation of reactive blue 19 with simultaneous electricity generation by the newly isolated electrogenic Klebsiella sp. C NCIM 5546 bacterium in a microbial fuel cell. Int Biodeterior Biodegradation 133:194–201

    Article  CAS  Google Scholar 

  • Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methe BA, Liu A, Ward JE, Woodard TL, Webster J, Lovley DR (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8:1805–1815

    Article  CAS  Google Scholar 

  • Holmes DE, Dang Y, Walker DJ et al (2016) The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microb Genom 2:e000072

    Google Scholar 

  • Iannaci A, Myles A, Flinois T, Behan JA, Barrière F, Scanlan EM, Colavita PE (2020) Tailored glycosylated anode surfaces: addressing the exoelectrogen bacterial community via functional layers for microbial fuel cell applications. Bioelectrochemistry 136:107621

    Article  CAS  Google Scholar 

  • Inoue K, Qian X, Morgado L, Kim BC, Mester T̈, Izallalen M, Salgueiro CA, Lovley DR (2010) Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. Appl Environ Microbiol 76:3999–4007

    Article  CAS  Google Scholar 

  • Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100:717–723

    Article  CAS  Google Scholar 

  • Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77:393–402

    Article  CAS  Google Scholar 

  • Kang YL, Ibrahim S, Pichiah S (2015) Synergetic effect of conductive polymer poly (3, 4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour Technol 189:364–369

    Article  CAS  Google Scholar 

  • Kang YL, Pichiah S, Ibrahim S (2017) Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. Int J Hydrog Energy 42:1661–1671

    Article  CAS  Google Scholar 

  • Katuri KP, Enright AM, O'Flaherty V, Leech D (2012) Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry 87:164–171

    Article  CAS  Google Scholar 

  • Katz E, Lioubashevski O, Willner I (2004) Magnetic field effects on cytochrome c-mediated bioelectrocatalytic transformations. J Am Chem Soc 126:11088–11092

    Article  CAS  Google Scholar 

  • Katz E, Lioubashevski O, Willner I (2005) Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells. J Am Chem Soc 127:3979–3988

    Article  CAS  Google Scholar 

  • Kiely PD, Regan JM, Logan BE (2011a) The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotechnol 22:378–385

    Article  CAS  Google Scholar 

  • Kiely PD, Rader G, Regan JM, Logan BE (2011b) Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresour Technol 102:361–366

    Article  CAS  Google Scholar 

  • Kim JR, Jung SH, Regan JM et al (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour.Technol 98:2568–2577

    Article  CAS  Google Scholar 

  • Kim C, Lee CR, Song YE, Heo J, Choi SM, Lim DH, Cho J, Park C, Jang M, Kim JR (2017) Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater. Chem Eng J 328:703–707

    Article  CAS  Google Scholar 

  • Kouzuma A, Kasai T, Hirose A et al (2015) Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front Microbiol 6:609

    Article  Google Scholar 

  • Kumar R, Singh L, Zularisam AW (2016) Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sust Energ Rev 56:1322–1336

    Article  CAS  Google Scholar 

  • Łebkowska M, Rutkowska-Narożniak A, Pajor E, Pochanke Z (2011) Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresour Technol 102:8777–8782

    Article  CAS  Google Scholar 

  • Levar CE, Chan CH, Mehta-Kolte MG et al (2014) An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. MBio 5:e02034

    Article  CAS  Google Scholar 

  • Levar CE, Hoffman CL, Dunshee AJ, Toner BM, Bond DR (2017) Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J 11:741–752

    Article  CAS  Google Scholar 

  • Li F, Li Y, Sun L, Li X, Yin C, An X, Chen X, Tian Y, Song H (2017) Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnol Biofuels 10:196

    Article  CAS  Google Scholar 

  • Li F, Wang L, Liu C, Wu D, Song H (2018) Engineering exoelectrogens by synthetic biology strategies. Curr Opin Electrochem 10:37–45

    Article  CAS  Google Scholar 

  • Li C, Wang L, Liu H (2018a) Enhanced redox conductivity and enriched Geobacteraceae of exoelectrogenic biofilms in response to static magnetic field. Appl Microbiol Biotechnol 102:7611–7621

    Article  CAS  Google Scholar 

  • Li F, Yin C, Sun L, Li Y, Guo X, Song H (2018b) Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells. Biotechnol J 13:1700491

    Article  CAS  Google Scholar 

  • Lin XQ, Li ZL, Liang B, Nan J, Wang AJ (2019) Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere 219:358–364

    Article  CAS  Google Scholar 

  • Liu S, Yang F, Meng F, Chen H, Gong Z (2008) Enhanced anammox consortium activity for nitrogen removal: impacts of static magnetic field. J Biotechnol 138:96–102

    Article  CAS  Google Scholar 

  • Liu Y, Wang Z, Liu J, Levar C, Edwards MJ, Babauta JT, Kennedy DW, Shi Z, Beyenal H, Bond DR, Clarke TA, Butt JN, Richardson DJ, Rosso KM, Zachara JM, Fredrickson JK, Shi L (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6:776–785

    Article  CAS  Google Scholar 

  • Liu J, Guo T, Wang D, Ying H (2015) Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell. Biotechnol Lett 37:95–100

    Article  CAS  Google Scholar 

  • Liu X, Wang S, Xu A, Zhang L, Liu H, Ma LZ (2019) Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl Microbiol Biotechnol 103:1535–1544

    Article  CAS  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952

    Article  CAS  Google Scholar 

  • Lovley DR (2017) Electrically conductive pili: biological function and potential applications in electronics. Curr Opin Electrochem 4:190–198

    Article  CAS  Google Scholar 

  • Lovley DR, Ueki T, Zhang T et al (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications, in: Poole, R.K. (Ed). Adv Microb Physiol 59:1–100

    Article  CAS  Google Scholar 

  • Lu S, Xie B, Liu B, Lu B, Xing D (2019) Neglected effects of inoculum preservation on the start-up of psychrophilic bioelectrochemical systems and shaping bacterial communities at low temperature. Front Microbiol 10:935

    Article  Google Scholar 

  • Marshall CW, May HD (2009) Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy Environ Sci 2:699–705

    Article  CAS  Google Scholar 

  • McAnulty MJ, Poosarla GV, Kim KY et al (2017) Electricity from methane by reversing methanogenesis. Nat Commun 8:1–8

    Article  CAS  Google Scholar 

  • Mclean SJ, Wanger G, Gorby YA et al (2010) Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities. Environ Sci Technol 44:2721–2727

    Article  CAS  Google Scholar 

  • Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641

    Article  CAS  Google Scholar 

  • Milliken CE, May HD (2007) Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 73:1180–1189

    Article  CAS  Google Scholar 

  • Mitchell AC, Peterson L, Reardon CL et al (2012) Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite. Geobiology 10:355–370

    Article  CAS  Google Scholar 

  • Mukherjee P, Saravanan P (2019) Perspective view on materialistic, mechanistic and operating challenges of microbial fuel cell on commercialisation and their way ahead. ChemistrySelect 4:1601–1612

    Article  CAS  Google Scholar 

  • Mukherjee P, Saravanan P (2020) Graphite nanopowder functionalized 3-D acrylamide polymeric anode for enhanced performance of microbial fuel cell. Int J Hydrog Energy 45:23411–23421

    Article  CAS  Google Scholar 

  • Mukherjee P, Mishra P, Saravanan P (2018) Microbial fuel cell: a prospective sustainable solution for energy and environmental crisis. Int J Biosen Bioelectron 4:191–193

    Google Scholar 

  • Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW, Lovley DR (2005) Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe (III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674

    Article  CAS  Google Scholar 

  • Nevin KP, Kim BC, Glaven RH, Johnson JP, Woodard TL, Methé BA, DiDonato RJ, Covalla SF, Franks AE, Liu A, Lovley DR (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4:e5628

    Article  CAS  Google Scholar 

  • Niessen J, Schröder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation: a bacterial fuel cell operating on starch. Electrochem Commun 6:955–958

    Article  CAS  Google Scholar 

  • Nouri P, Najafpour DG (2017) Impacts of process parameters optimization on the performance of the annular single chamber microbial fuel cell in wastewater treatment. Eng Life Sci 17:545–551

    Article  CAS  Google Scholar 

  • Nwagu KE, Ekpo IA, Ekaluo BU, Ubi G, Elemba M, Uzoh V (2019) Optimization and molecular characterization of exoelectrogenic isolates for enhanced microbial fuel cell performance. Microbiol Biotechnol Lett 47:621–629

    Article  Google Scholar 

  • Ojima Y, Kawaguchi T, Fukui S, Kikuchi R, Terao K, Koma D, Ohmoto T, Azuma M (2020) Promoted performance of microbial fuel cells using Escherichia coli cells with multiple-knockout of central metabolism genes. Bioprocess Biosyst Eng 43:323–332

    Article  CAS  Google Scholar 

  • Oliveira VB, Simões M, Melo LF, Pinto AMFR (2013) Overview on the developments of microbial fuel cells. Biochem Eng J 73:53–64

    Article  CAS  Google Scholar 

  • Ou S, Kashima H, Aaron DS, Regan JM, Mench MM (2017) Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell. J Power Sources 347:159–169

    Article  CAS  Google Scholar 

  • Patil SA, Harnisch F, Kapadnis B, Schröder U (2010) Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron 26:803–808

    Article  CAS  Google Scholar 

  • Pirbadian S, El-Naggar MY (2012) Multistep hopping and extracellular charge transfer in microbial redox chains. Phys Chem Chem Phys 14:13802–13808

    Article  CAS  Google Scholar 

  • Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, el-Naggar MY (2014) Shewanella oneidensis MR-nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 111:12883–12888

    Article  CAS  Google Scholar 

  • Qiao Y, Li CM, Bao SJ et al (2008) Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. ChemComm 11:1290–1292

    Google Scholar 

  • Qiao Y, Qiao YJ, Zou L, Ma CX, Liu JH (2015) Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Bioresour Technol 198:1–6

    Article  CAS  Google Scholar 

  • Qu Y, Feng Y, Wang X, Logan BE (2012) Use of a coculture to enable current production by geobacter sulfurreducens. Appl Environ Microbiol 78:3484–3487

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  • Read ST, Dutta P, Bond PL, Keller J, Rabaey K (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbial 10:98

    Article  CAS  Google Scholar 

  • Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781–4786

    Article  CAS  Google Scholar 

  • Ren H, Jiang C, Chae J (2017) Effect of temperature on a miniaturized microbial fuel cell (MFC). Micro and Nano Systems Letters 5:1–7

    Article  Google Scholar 

  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–3678

    Article  CAS  Google Scholar 

  • Rotaru AE, Woodard TL, Nevin KP et al (2015) Link between capacity for current production and syntrophic growth in Geobacter species. Front Microbiol 6:744

    Article  Google Scholar 

  • Roy JN, Luckarift HR, Lau C, Falase A, Garcia KE, Ista LK, Chellamuthu P, Ramasamy RP, Gadhamshetty V, Wanger G, Gorby YA, Nealson KH, Bretschger O, Johnson GR, Atanassov P (2012) A study of the flavin response by Shewanella cultures in carbon-limited environments. RSC Adv 2:10020–10027

    Article  CAS  Google Scholar 

  • Salas EC, Sun Z, Luttge A et al (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852–4856

    Article  CAS  Google Scholar 

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  • Semenec L, Laloo AE, Schulz BL, Vergara IA, Bond PL, Franks AE (2018) Deciphering the electric code of Geobacter sulfurreducens in cocultures with Pseudomonas aeruginosa via SWATH-MS proteomics. Bioelectrochemistry 119:150–160

    Article  CAS  Google Scholar 

  • Shen HB, Yong XY, Chen YL, Liao ZH, Si RW, Zhou J, Wang SY, Yong YC, OuYang PK, Zheng T (2014) Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresour Technol 167:490–494

    Article  CAS  Google Scholar 

  • Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr) oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20

    Article  CAS  Google Scholar 

  • Shi L, Rosso KM, Clarke TA et al (2012) Molecular underpinnings of Fe (III) oxide reduction by Shewanella oneidensis MR-1. Front Microbiol 3:50

    Article  Google Scholar 

  • Shi L, Fredrickson JK, Zachara JM (2014) Genomic analyses of bacterial porin-cytochrome gene clusters. Front Microbiol 5:657

    Article  Google Scholar 

  • Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu HQ, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662

    Article  CAS  Google Scholar 

  • Shi M, Jiang Y, Shi L (2019) Electromicrobiology and biotechnological applications of the exoelectrogens Geobacter and Shewanella spp. Sci China Technol Sci 62:1670–1678

    Article  Google Scholar 

  • Shrestha PM, Rotaru AE, Summers ZM, Shrestha M, Liu F, Lovley DR (2013) Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl Environ Microbiol 79:2397–2404

    Article  CAS  Google Scholar 

  • Smith JA, Lovley DR, Tremblay PL (2013) Outer cell surface components essential for Fe (III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901–907

    Article  CAS  Google Scholar 

  • Subramanian P, Pirbadian S, El-Naggar MY et al (2018) Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc Natl Acad Sci U S A 115:E3246–E3255

    Article  CAS  Google Scholar 

  • Sun D, Wang A, Cheng S, Yates M, Logan BE (2014) Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems. Int J Syst Evol Microbiol 64:3485–3491

    Article  CAS  Google Scholar 

  • Sun D, Wan X, Liu W, Xia X, Huang F, Wang A, Smith JA, Dang Y, Holmes DE (2019) Characterization of the genome from Geobacter anodireducens, a strain with enhanced current production in bioelectrochemical systems. RSC Adv 9:25890–25899

    Article  CAS  Google Scholar 

  • Thapa BS, Chandra TS (2019) Kluyvera georgiana MCC 3673: a novel electrogen enriched in microbial fuel cell fed with oilseed cake. Curr Microbiol 76:650–657

    Article  CAS  Google Scholar 

  • Tice RC, Kim Y (2014) Influence of substrate concentration and feed frequency on ammonia inhibition in microbial fuel cells. J. Power Sources 271:360–365

    Article  CAS  Google Scholar 

  • Tong ZH, Yu HQ, Li WW, Wang YK, Sun M, Liu XW, Sheng GP (2015) Application of a weak magnetic field to improve microbial fuel cell performance. Ecotoxicology 24:2175–2180

    Article  CAS  Google Scholar 

  • Torres CI, Marcus AK, Lee H-S, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    Article  CAS  Google Scholar 

  • Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe (III) oxide. Environ Microbiol Rep 4:82–88

    Article  CAS  Google Scholar 

  • Ullah Z, Zeshan S (2020) Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell. Water Sci Technol 81:1336–1344

    Article  CAS  Google Scholar 

  • Wang XH, Diao MH, Yang Y, Shi YJ, Gao MM, Wang SG (2012) Enhanced aerobic nitrifying granulation by static magnetic field. Bioresour Technol 110:105–110

    Article  CAS  Google Scholar 

  • Wang VB, Sivakumar K, Yang L, Zhang Q, Kjelleberg S, Loo SCJ, Cao B (2015) Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor. Sci Rep 5:11222

    Article  Google Scholar 

  • Wang Q, Jones AAD, Gralnick JA et al (2019) Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci Adv 5:eaat5664

    Article  CAS  Google Scholar 

  • Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77:7633–7639

    Article  CAS  Google Scholar 

  • Xing D, Cheng S, Regan JM, Logan BE (2009) Change in microbial communities in acetate-and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25:105–111

    Article  CAS  Google Scholar 

  • Xu S, Barrozo A, Tender LM, Krylov AI, el-Naggar MY (2018) Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 Cells. J Am Chem Soc 140:10085–10089

    Article  CAS  Google Scholar 

  • Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H (2015) Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth Biol 4:815–823

    Article  CAS  Google Scholar 

  • Yavuz H, Çelebi SS (2000) Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzym Microb Technol 26:22–27

    Article  CAS  Google Scholar 

  • Yong XY, Shi DY, Chen YL, Jiao F, Lin X, Zhou J, Wang SY, Yong YC, Sun YM, OuYang PK, Zheng T (2014a) Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour Technol 152:220–224

    Article  CAS  Google Scholar 

  • Yong XY, Feng J, Chen YL, Shi DY, Xu YS, Zhou J, Wang SY, Xu L, Yong YC, Sun YM, Shi CL, OuYang PK, Zheng T (2014b) Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosens Bioelectron 56:19–25

    Article  CAS  Google Scholar 

  • Yong XY, Yan ZY, Shen HB, Zhou J, Wu XY, Zhang LJ, Zheng T, Jiang M, Wei P, Jia HH, Yong YC (2017) An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell. Bioresour Technol 241:1191–1196

    Article  CAS  Google Scholar 

  • Yoshida N, Miyata Y, Doi K, Goto Y, Nagao Y, Tero R, Hiraishi A (2016) Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria. Sci Rep 6:21867

    Article  CAS  Google Scholar 

  • Zacharoff L, Chan CH, Bond DR (2016) Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107:7–13

    Article  CAS  Google Scholar 

  • Zacharoff LA, Morrone DJ, Bond DR (2017) Geobacter sulfurreducens extracellular multiheme cytochrome PgcA facilitates respiration to Fe (III) oxides but not electrodes. Front Microbiol 8:2481

    Article  Google Scholar 

  • Zhang T, Cui C, Chen S, Yang H, Shen P (2008) The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem Commun 10:293–297

    Article  CAS  Google Scholar 

  • Zhang L, Li J, Zhu X, Ye D, Fu Q, Liao Q (2017) Startup performance and anodic biofilm distribution in continuous-flow microbial fuel cells with serpentine flow fields: effects of external resistance. Ind Eng Chem Res 56:3767–3774

    Article  CAS  Google Scholar 

  • Zhao YG, Zhang Y, She Z, Shi Y, Wang M, Gao M, Guo L (2017) Effect of substrate conversion on performance of microbial fuel cells and anodic microbial communities. Environ Eng Sci 34:666–674

    Article  CAS  Google Scholar 

  • Zhou S, Yang G, Lu Q, Wu M (2014) Geobactersoli sp. nov., a dissimilatory Fe (III)-reducing bacterium isolated from forest soil. Int J Syst Evol Microbiol 64:3786–3791

    Article  CAS  Google Scholar 

  • Zhou H, Liu B, Wang Q, Sun J, Xie G, Ren N, Ren ZJ, Xing D (2017) Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems. Biotechnol Biofuels 10:238–249

    Article  CAS  Google Scholar 

  • Zhou H, Mei X, Liu B, Xie G, Xing D (2019) Magnet anode enhances extracellular electron transfer and enrichment of exoelectrogenic bacteria in bioelectrochemical systems. Biotechnol Biofuels 12:133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Science and Engineering Research Board, Department of Science and Technology (DST-SERB) for the financial support received under IMPRINT with grant code IMP/2019/000286.

Availability of data and materials

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

PS and PM conceived idea for the article. PM executed literature search and paper drafting. PS, GP, and MJ critically revised the work. All authors read and approved the final manuscript

Corresponding author

Correspondence to Saravanan Pichiah.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent of publication

Figs 1a–e and 2a are open access articles with copyright by citation and are cited in the manuscript as per instruction. Citation is provided for Figs 3a and b and 4a and b. Copyright has been taken for reuse of Figs 2b, c, d, and e; 3 c and d; 4 c, d, and e; and 5.

Consent to publish

All co-authors agreed to publish the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Weiming Zhang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P., Pichiah, S., Packirisamy, G. et al. Biocatalyst physiology and interplay: a protagonist of MFC operation. Environ Sci Pollut Res 28, 43217–43233 (2021). https://doi.org/10.1007/s11356-021-15015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15015-w

Keywords

Navigation