Skip to main content

Advertisement

Log in

Passive environmental residential exposure to agricultural pesticides and hematological malignancies in the general population: a systematic review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Incidence rates of hematological malignancies have been constantly increasing over the past 40 years. In parallel, an expanding use of agricultural pesticides has been observed. Only a limited number of studies investigated the link between hematological malignancies risk and passive environmental residential exposure to agricultural pesticides in the general population. The purpose of our review was to summarize the current state of knowledge on that question. A systematic literature search was conducted using PubMed and Scopus databases. We built a scoring scale to appraise relevance of each selected articles. We included 23 publications: 13 ecological studies, 9 case-control studies and a cohort study. Positive associations were reported between hematological malignancies and individual pesticides, pesticide groups, all pesticides without distinction, or some crop types. Relevance score was highly various across studies regardless of their design. Children studies were the majority and had overall higher relevance scores. The effect of passive environmental residential exposure to agricultural pesticides on hematological malignancies risk is suggested by the literature. The main limitation of the literature available is the high heterogeneity across studies, especially in terms of exposure assessment approach. Further studies with high methodological relevance should be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ALL:

Acute lymphoid leukemia

AML:

Acute myeloid leukemia

EPA:

the Environmental Protection Agency

HL:

Hodgkin’s lymphoma

HM:

Hematological malignancies

IARC:

International Agency for Research on Cancer

MM:

Multiple myeloma

NHL:

Non-Hodgkin’s lymphoma

OR:

Odds ratio

PUR:

Pesticide use reports

RR:

Relative risk

SRR:

Standardized rate ratio

References

  • Alexander DD, Mink PJ, Adami HO, Chang ET, Cole P, Mandel JS, Trichopoulos D (2007) The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer 120(Suppl 12):1–39. https://doi.org/10.1002/ijc.22719

    Article  CAS  Google Scholar 

  • Altahan A, Harris LJ, Porta J, Jain AL, Martin MG (2020) Association between pesticide use and incidence of diffuse large B-cell lymphoma. Anticancer Res 40(10):5423–5426. https://doi.org/10.21873/anticanres.14552

    Article  CAS  Google Scholar 

  • Bailey HD, Fritschi L, Infante-Rivard C, Glass DC, Miligi L, Dockerty JD, Lightfoot T, Clavel J, Roman E, Spector LG, Kaatsch P, Metayer C, Magnani C, Milne E, Polychronopoulou S, Simpson J, Rudant J, Sidi V, Rondelli R, Orsi L, Kang AY, Petridou E, Schüz J (2014) Parental occupational pesticide exposure and the risk of childhood leukemia in the offspring: findings from the childhood leukemia international consortium. Int J Cancer 135:2157–2172. https://doi.org/10.1002/ijc.28854

    Article  CAS  Google Scholar 

  • Bailey HD, Infante-Rivard C, Metayer C, Clavel J, Lightfoot T, Kaatsch P, Roman E, Magnani C, Spector LG, Th Petridou E, Milne E, Dockerty JD, Miligi L, Armstrong BK, Rudant J, Fritschi L, Simpson J, Zhang L, Rondelli R, Baka M, Orsi L, Moschovi M, Kang AY, Schüz J (2015) Home pesticide exposures and risk of childhood leukemia: findings from the childhood leukemia international consortium. Int J Cancer 137:2644–2663. https://doi.org/10.1002/ijc.29631

    Article  CAS  Google Scholar 

  • Béranger R (2014) Testicular germ cell tumors: assessing the impact of occupational and environmental exposure to pesticides. Doctoral thesis, University Claude Bernard - Lyon I

  • Boccolini P d MM, Boccolini CS, Chrisman J d R, Markowitz SB, Koifman S, Koifman RJ, Meyer A (2013) Pesticide use and non-Hodgkin’s lymphoma mortality in Brazil. Int J Hyg Environ Health 216:461–466. https://doi.org/10.1016/j.ijheh.2013.03.007

    Article  CAS  Google Scholar 

  • Bonzini S, Verro R, Otto S, Lazzaro L, Finizio A, Zanin G, Vighi M (2006) Experimental validation of a geographical information systems-based procedure for predicting pesticide exposure in surface water. Environ Sci Technol 40:7561–7569

    Article  CAS  Google Scholar 

  • Booth BJ, Ward MH, Turyk ME, Stayner LT (2015) Agricultural crop density and risk of childhood cancer in the midwestern United States: an ecologic study. Environ Health Glob Access Sci Source 14:82. https://doi.org/10.1186/s12940-015-0070-3

    Article  CAS  Google Scholar 

  • Brody JG, Vorhees DJ, Melly SJ, Swedis SR, Drivas PJ, Rudel RA (2002) Using GIS and historical records to reconstruct residential exposure to large-scale pesticide application. J Expo Anal Environ Epidemiol 12:64–80

    Article  Google Scholar 

  • Carozza SE, Li B, Elgethun K, Whitworth R (2008) Risk of childhood cancers associated with residence in agriculturally intense areas in the United States. Environ Health Perspect 116:559–565. https://doi.org/10.1289/ehp.9967

    Article  Google Scholar 

  • Carozza SE, Li B, Wang Q, Horel S, Cooper S (2009) Agricultural pesticides and risk of childhood cancers. Int J Hyg Environ Health 212:186–195. https://doi.org/10.1016/j.ijheh.2008.06.002

    Article  Google Scholar 

  • Chang ET, Adami HO, Bailey WH, Boffetta P, Krieger RI, Moolgavkar SH, Mandel JS (2014) Validity of geographically modeled environmental exposure estimates. Crit Rev Toxicol 44:450–466. https://doi.org/10.3109/10408444.2014.902029

    Article  CAS  Google Scholar 

  • Chen M, Chang CH, Tao L, Lu C (2015) Residential exposure to pesticide during childhood and childhood cancers: a meta-analysis. Pediatrics 136:719–729. https://doi.org/10.1542/peds.2015-0006

    Article  Google Scholar 

  • Chrisman J d R, Koifman S, de Novaes Sarcinelli P, Moreira JC, Koifman RJ, Meyer A (2009) Pesticide sales and adult male cancer mortality in Brazil. Int. J Hyg Environ Health 212:310–321. https://doi.org/10.1016/j.ijheh.2008.07.006

    Article  Google Scholar 

  • Cogliano VG, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Wild CP (2011) Preventable exposures associated with human cancers. JNCI 103(24):1827–1839. https://doi.org/10.1093/jnci/djr483

    Article  Google Scholar 

  • Coste A, Goujon S, Faure L, Hemon D, Clavel J (2020) Agricultural crop density in the municipalities of France and incidence of childhood leukemia: an ecological study. Environ Res. 187:109517. https://doi.org/10.1016/j.envres.2020.109517

    Article  CAS  Google Scholar 

  • Cowppli-Bony A, Colonna M, Ligier K, Jooste V, Defossez G, Monnereau A, Réseau des registres de cancer Francim (2019) Descriptive epidemiology of cancer in metropolitan France: Incidence, survival and prevalence. Bull Cancer 106(7-8):617–634. https://doi.org/10.1016/j.bulcan.2018.11.016

    Article  Google Scholar 

  • Desbiolles A, Roudier C, Goria S, Stempfelet M, Kairo C, Quintin C, Bidondo ML, Monnereau A, Vacquier B (2018) Cancer incidence in adults living in the vicinity of nuclear power plants in France, based on data from the French Network of Cancer Registries. Int J Cancer 142:899–909. https://doi.org/10.1002/ijc.31116

    Article  CAS  Google Scholar 

  • Deziel NC, Rull RP, Colt JS, Reynolds P, Whitehead TP, Gunier RB, Month SR, Taggart DR, Buffler P, Ward MH, Metayer C (2014) Polycyclic aromatic hydrocarbons in residential dust and risk of childhood acute lymphoblastic leukemia. Environ Res 133:388–395. https://doi.org/10.1016/j.envres.2014.04.033

    Article  CAS  Google Scholar 

  • Deziel NC, Colt JS, Kent EE, Gunier RB, Reynolds P, Booth B, Metayer C, Ward MH (2015) Associations between self-reported pest treatments and pesticide concentrations in carpet dust. Environ Health Glob Access Sci Source 14:27. https://doi.org/10.1186/s12940-015-0015-x

    Article  CAS  Google Scholar 

  • Fazzi R, Manetti C, Focosi D, Miligi L, Benvenuti A, Bonari E, Barale R, Petrini M (2010) Areas with high soil percolation by herbicides have higher incidence of low-grade non-Hodgkin lymphomas. Ann Hematol 89:941–943. https://doi.org/10.1007/s00277-009-0898-0

    Article  Google Scholar 

  • Fontana A, Picoco C, Masala G, Prastaro C, Vineis P (1998) Incidence rates of lymphomas and environmental measurements of phenoxy herbicides: ecological analysis and case-control study. Arch Environ Health 53:384–387. https://doi.org/10.1080/00039899809605725

    Article  CAS  Google Scholar 

  • Gómez-Barroso D, García-Pérez J, López-Abente G, Tamayo-Uria I, Morales-Piga A, Pardo Romaguera E, Ramis R (2016) Agricultural crop exposure and risk of childhood cancer: new findings from a case-control study in Spain. Int J Health Geogr 15:18. https://doi.org/10.1186/s12942-016-0047-7

    Article  Google Scholar 

  • INSERM (2013) Pesticides. Effets sur la santé. Collection expertise collective, Paris

  • International Agency For Research On Cancer (IARC) Monographs. https://monographs.iarc.fr. Accessed 20 March 2021

  • Leon ME, Schinasi LH, Lebailly P, Beane Freeman LE, Nordby KC, Ferro G, Monnereau A, Brouwer M, Tual S, Baldi I, Kjaerheim K, Hofmann JN, Kristensen P, Koutros S, Straif K, Kromhout H, Schüz J (2019) Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium. Int J Epidemiol 48(5):1519–1535. https://doi.org/10.1093/ije/dyz017

    Article  Google Scholar 

  • Lerro CC, Koutros S, Andreotti G, Sandler DP, Lynch CF, Louis LM, Blair A, Parks CG, Shrestha S, Lubin JH, Albert PS, Hofmann JN, Beane Freeman LE (2019) Cancer incidence in the Agricultural Health Study after 20 years of follow-up. Cancer Causes Control 30:311–322. https://doi.org/10.1007/s10552-019-01140-y

    Article  Google Scholar 

  • Ma X, Buffler PA, Gunier RB, Dahl G, Smith MT, Reinier K, Reynolds P (2002) Critical windows of exposure to household pesticides and risk of childhood leukemia. Environ Health Perspect 110:955–960. https://doi.org/10.1289/ehp.02110955

    Article  CAS  Google Scholar 

  • Malagoli C, Costanzini S, Heck JE, Malavolti M, De Girolamo G, Oleari P, Palazzi G, Teggi S, Vinceti M (2016) Passive exposure to agricultural pesticides and risk of childhood leukemia in an Italian community. Int J Hyg Environ Health 219:742–748. https://doi.org/10.1016/j.ijheh.2016.09.015

    Article  CAS  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 8:336–341. https://doi.org/10.1016/j.ijsu.2010.02.007

    Article  Google Scholar 

  • Müller AMS, Ihorst G, Mertelsmann R, Engelhardt M (2005) Epidemiology of non-Hodgkin’s lymphoma (NHL): trends, geographic distribution, and etiology. Ann Hematol 84:1–12. https://doi.org/10.1007/s00277-004-0939-7

    Article  Google Scholar 

  • Nuckols JR, Gunier RB, Riggs P, Miller R, Reynolds P, Ward MH (2007) Linkage of the California Pesticide Use Reporting Database with spatial land use data for exposure assessment. Environ Health Perspect 115:684–689

    Article  CAS  Google Scholar 

  • Office of Health Assessment and Translation (OHAT) (2015) handbook for conducting a literature-based health assessment using OHAT approach for systematic review and evidence integration. National Toxicology Program, U.S. Department of Health and Human Services.

  • Park AS, Ritz B, Yu F, Cockburn M, Heck JE (2020) Prenatal pesticide exposure and childhood leukemia - a California statewide case-control study. Int J Hyg Environ Health 226:113486. https://doi.org/10.1016/j.ijheh.2020.113486

    Article  CAS  Google Scholar 

  • Parrón T, Requena M, Hernández AF, Alarcón R (2014) Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol Lett 230:157–165. https://doi.org/10.1016/j.toxlet.2013.11.009

    Article  CAS  Google Scholar 

  • Reynolds P, Von Behren J, Gunier RB, Goldberg DE, Hertz A, Harnly ME (2002) Childhood cancer and agricultural pesticide use: an ecologic study in California. Environ Health Perspect. 110:319–324. https://doi.org/10.1289/ehp.02110319

    Article  Google Scholar 

  • Reynolds P, Von Behren J, Gunier R, Goldberg DE, Hertz A (2005a) Agricultural pesticides and lymphoproliferative childhood cancer in California. Scand J Work Environ Health 31(Suppl 1):46–54 discussion 5-7

    Google Scholar 

  • Reynolds P, Von Behren J, Gunier RB, Goldberg DE, Harnly M, Hertz A (2005b) Agricultural pesticide use and childhood cancer in California. Epidemiol Camb Mass 16:93–100

    Article  Google Scholar 

  • Ritz B, Rull RP (2008) Assessment of environmental exposures from agricultural pesticides in childhood leukaemia studies: challenges and opportunities. Radiat Prot Dosimetry 132:148–155. https://doi.org/10.1093/rpd/ncn268

    Article  CAS  Google Scholar 

  • Rull RP, Ritz B (2003) Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias. Environ Health Perspect. 111:1582–1589. https://doi.org/10.1289/ehp.6118

    Article  Google Scholar 

  • Rull RP, Gunier R, Von Behren J, Hertz A, Crouse V, Buffler PA, Reynolds P (2009) Residential proximity to agricultural pesticide applications and childhood acute lymphoblastic leukemia. Environ Res 109:891–899. https://doi.org/10.1016/j.envres.2009.07.014

    Article  CAS  Google Scholar 

  • Schinasi L, Leon ME (2014) Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health 11:4449–4527. https://doi.org/10.3390/ijerph110404449

    Article  Google Scholar 

  • Schreinemachers DM (2000) Cancer mortality in four northern wheat-producing states. Environ Health Perspect 108:873–881. https://doi.org/10.1289/ehp.00108873

    Article  CAS  Google Scholar 

  • Schreinemachers DM, Creason JP, Garry VF (1999) Cancer mortality in agricultural regions of Minnesota. Environ Health Perspect 107:205–211. https://doi.org/10.1289/ehp.99107205

    Article  CAS  Google Scholar 

  • Smith AM, Smith MT, La Merrill MA, Liaw J, Steinmaus C (2017) 2,4-dichlorophenoxyacetic acid (2,4-D) and risk of non-Hodgkin lymphoma: a meta-analysis accounting for exposure levels. Ann Epidemiol 27:281–289.e4. https://doi.org/10.1016/j.annepidem.2017.03.003

    Article  Google Scholar 

  • STROBE Statement. https://www.strobe-statement.org/index.php?id=strobe-home. Accessed 15 May 2019

  • Teske ME, Bird SL, Esterly DM, Curbishley TB, Ray SL, Perry SG (2002) AgDRIFT: a model for estimating near-field spray drift from aerial applications. Environ Toxicol Chem 21:659–671

    Article  CAS  Google Scholar 

  • Thompson JA, Carozza SE, Zhu L (2008) Geographic risk modeling of childhood cancer relative to county-level crops, hazardous air pollutants and population density characteristics in Texas. Environ Health Glob Access Sci Source 7:45. https://doi.org/10.1186/1476-069X-7-45

    Article  CAS  Google Scholar 

  • Thorpe N, Shirmohammadi A (2005) Herbicides and nitrates in groundwater of Maryland and childhood cancers: a geographic information systems approach. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev. 23:261–278. https://doi.org/10.1080/10590500500235001

    Article  CAS  Google Scholar 

  • Tual S, Busson A, Boulanger M, Renier M, Piel C, Pouchieu C, Pons R, Perrier S (2019) Occupational exposure to pesticides and multiple myeloma in the AGRICAN cohort. Cancer Causes Control 30(11):1243–1250. https://doi.org/10.1007/s10552-019-01230-x

    Article  Google Scholar 

  • Van Maele-Fabry G, Lantin AC, Hoet P, Lison D (2010) Childhood leukaemia and parental occupational exposure to pesticides: a systematic review and meta-analysis. Cancer Causes Control CCC 21:787–809. https://doi.org/10.1007/s10552-010-9516-7

    Article  Google Scholar 

  • Van Maele-Fabry G, Gamet-Payrastre L, Lison D (2019) Household exposure to pesticides and risk of leukemia in children and adolescents: updated systematic review and meta-analysis. Int J Hyg Environ Health 222:49–67. https://doi.org/10.1016/j.ijheh.2018.08.004

    Article  CAS  Google Scholar 

  • Vineis P, Faggiano F, Tedeschi M, Ciccone G (1991) Incidence rates of lymphomas and soft-tissue sarcomas and environmental measurements of phenoxy herbicides. J Natl Cancer Inst 83:362–363. https://doi.org/10.1093/jnci/83.5.362

    Article  CAS  Google Scholar 

  • Vinson F, Merhi M, Baldi I, Raynal H, Gamet-Payrastre L (2011) Exposure to pesticides and risk of childhood cancer: a meta-analysis of recent epidemiological studies. Occup Environ Med. 68:694–702. https://doi.org/10.1136/oemed-2011-100082

    Article  CAS  Google Scholar 

  • Walker KM, Carozza S, Cooper S, Elgethun K (2007) Childhood cancer in Texas counties with moderate to intense agricultural activity. J Agric Saf Health 13:9–24

    Article  CAS  Google Scholar 

  • Whitehead TP, Metayer C, Wiemels JL, Singer AW, Miller MD (2016) Childhood leukemia and primary prevention. Curr Probl Pediatr Adolesc Health Care 46:317–352. https://doi.org/10.1016/j.cppeds.2016.08.004

    Article  Google Scholar 

  • Woods N, Craig IP, Dorr G, Young B (2001) Spray drift of pesticides arising from aerial application in cotton. J Environ Qual 30:697–701

    Article  CAS  Google Scholar 

  • Yildirim M, Karakilinc H, Yildiz M, Kurtoglu E, Dilli UD, Goktas S, Demirpence O (2013) Non-Hodgkin lymphoma and pesticide exposure in Turkey. Asian Pac J Cancer Prev 14(6):3461–3463

    Article  Google Scholar 

  • Yudelman M, Ratta A, Nygaard D (1998) Pest management and food production looking to the future. Food, Agriculture and the Environment Discussion paper 2

  • Zhang L, Rana I, Shaffer RM, Taioli E, Sheppard L (2019) Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: a meta-analysis and supporting evidence. Mutat Res. 781:186–206. https://doi.org/10.1016/j.mrrev.2019.02.001

    Article  CAS  Google Scholar 

  • Zou B, Wilson JG, Zhan FB, Zeng Y (2009) Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit 11:475–490

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the French League Against Cancer and Professor Marc Maynadié of Dijon University.

Author information

Authors and Affiliations

Authors

Contributions

BV and AM had the idea for the article, CR performed the literature search and data analysis, CR, BV, and GB drafted the work, and SG, AM, and SO critically revised the work.

Corresponding author

Correspondence to Camille Roingeard.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roingeard, C., Monnereau, A., Goujon, S. et al. Passive environmental residential exposure to agricultural pesticides and hematological malignancies in the general population: a systematic review. Environ Sci Pollut Res 28, 43190–43216 (2021). https://doi.org/10.1007/s11356-021-14789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14789-3

Keywords

Navigation