Skip to main content

Advertisement

Log in

Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir, Saudi Arabia

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The present study uses Landsat satellite images of 1990, 2000 and 2018 to identify the land-use changes. Multilayer perceptron-neural network based land change modelling (LCM) has been applied to model future land-use/land cover (LULC). The prediction model has been validated using simulated and classified LULC maps of 2018 which resulted into an overall accuracy of 88%. The results indicate 389.27% increase in built-up area as the prominent land-use change during 1990–2018 and an increase of 56.25% in built-up area is forecasted during the year 2018–2040. Land absorption coefficient and land consumption rate indices, used to characterize urban expansion, indicate continued compact built-up structure during 1990–2018 due to population increase. The observations derived from this study would be useful as it will help the regional planners with forecasted land-use beforehand in planning the built-up and abundantly available natural resources in the area according to the increasing future demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abulfatih HA (1984) Elevationally restricted floral elements of the Asir Mountains, Saudi Arabia. J Arid Environ 7(1):35–41

  • Agarwal C, Green GM, Grove JM, Evans TP, Schweik CM (2001) A review and assessment of Land Use Change Models: Dynamics of Space, Time and Human Choice. Bloomington, IN: Center for the Study of Institutions, Population and Environmental Change, Indiana University and USDA Forest Service

  • Ahmed B, Ahmed R (2012) Modeling urban land cover growth dynamics using multi‑temporal satellite images: a case study of Dhaka, Bangladesh. ISPRS Int J Geoinf 1(1):3–31

  • Almazroui M, Mashat A, Assiri ME, Butt MJ (2017) Application of Landsat Data for Urban Growth Monitoring in Jeddah. Earth Syst Environ 1:25. https://doi.org/10.1007/s41748-017-0028-4

    Article  Google Scholar 

  • Alqarni S, Babiker A, Salih A (2018) Detection, Mapping and Assessment Change in Urban and Croplands Area in Al-Hassa Oasis, Eastern Region in Saudi Arabia Using Remote Sensing and Geographic Information System. J Geogr Inf Syst 10:659–685. https://doi.org/10.4236/jgis.2018.106034

    Article  Google Scholar 

  • Al-Shalabi M, Billa L, Pradhan B, Mansor S, Al-Sharif AAA (2012) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci 70(1):425–437

    Article  Google Scholar 

  • Al-Sharif AA, Pradhan B (2014) Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J Indian Soc Remote Sens 42:149–163

    Article  Google Scholar 

  • Al-Sharif AA, Pradhan B (2014) Monitoring and predicting land use change in Tripolimetropolitan city using an integrated markov chain and cellular automata models in GIS. Arab J Geosci 7:4291–4301

    Article  Google Scholar 

  • AlSubih M, Kumari M, Mallick J, Ramakrishnan R, Islam S, Singh CK (2021) Time series trend analysis of rainfall in last five decades and its quantification in Aseer Region of Saudi Arabia. Arab J Geosci 14(6):1–15

    Article  Google Scholar 

  • Altuwaijri HA, Alotaibi MH, Almudlaj AM, Almalki FM (2019) Predicting urban growth of Arriyadh city, capital of the Kingdom of Saudi Arabia, using Markov cellular automata in TerrSet geospatial system. Arab J Geosci 12:1–15. https://doi.org/10.1007/s12517-019-4261-z

    Article  Google Scholar 

  • Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67(1):9–26

    Article  Google Scholar 

  • Badlani B, Patel AN, Patel K, Kalubarme MH (2017) Urban Growth Monitoring using Remote Sensing and Geo-Informatics: Case Study of Gandhinagar, Gujarat State (India). Int J Geosci 08:563–576. https://doi.org/10.4236/ijg.2017.84030

    Article  Google Scholar 

  • Balha A, Singh CK (2018) Predictive Modeling of a Metropolitan City in India Using a Land Change Modeling Approach. In Geospatial Applications for Natural Resources Management. CRC press. pp 73-86

  • Balha A, Singh CK, Pandey S (2020a) Assessment of urban area dynamics in world’s second largest megacity at sub-city (district) level during 1973–2016 along with regional planning. Remote Sens Appl: Soc Environ 20:100383

    Google Scholar 

  • Balha A, Vishwakarma BD, Singh CK, Pandey S (2020b) Predicting impact of urbanization on water resources in megacity. Delhi Remote Sens Appl: Soc Environ 20:100361

    Google Scholar 

  • Basse RM, Omrani H, Charif O, Gerber P, Bódis K (2014) Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geogr 53:160–171

    Article  Google Scholar 

  • Belhaj OS, Mubako ST (2020) Land use land cover change and urban growth in Khoms district, Libya, 1976–2015. Int J Appl Geospatial Res 11:42–58. https://doi.org/10.4018/IJAGR.2020040103

    Article  Google Scholar 

  • Berihun ML, Tsunekawa A, Haregeweyn N, Meshesha DT, Adgo E, Tsubo M, Masunaga T, Fenta AA, Sultan D, Yibeltal M (2019) Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy 87:104052

    Article  Google Scholar 

  • Bhattacharjee S, Ghosh SK (2015) Spatio-temporal change modeling of lulc: a semantic kriging approach. ISPRS Annals Photogram Remote Sens Spatial Inform Sci 2(4):177

    Article  Google Scholar 

  • Bindajam AA, Mallick J, AlQadhi S, Singh CK, Hang HT (2020) Impacts of Vegetation and Topography on Land Surface Temperature Variability over the Semi-Arid Mountain Cities of Saudi Arabia. Atmos 11:762

    Article  Google Scholar 

  • Borana SL, Vaishnav A, Yadav SK, Parihar SK (2020) Urban Growth Assessment Using Remote Sensing, GIS and Shannon’s Entropy Model: A Case Study of Bhilwara City, Rajasthan. In: Proceedings of 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things, ICETCE 2020. Institute of Electrical and Electronics Engineers Inc., pp 216–221

  • Chan JC-W, Chan K-P, Yeh AG-O (2001) Detecting the nature of change in an urban environment: a comparison of machine learning algorithms. Photogram Eng Remote Sens 67(2):213–225

    Google Scholar 

  • Chen X, Vi~na A, Shortridge A, An L, Liu J (2014) Assessing the effectiveness of payments for ecosystem services: an agent-based modeling approach. Ecol Soc 19(1):7

    Article  Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automata model of historical urbanization in the San Franciso Bay area. Environ Plann B Plann Des 24(2):247–261

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46

  • Dadashpoor H, Salarian F (2020) Urban sprawl on natural lands: Analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran. Environ Dev Sustain 22(2):593–614

    Article  Google Scholar 

  • Dadhich PN, Hanaoka S (2010) Remote sensing, GIS and Markov’s method for land use change detection and prediction of Jaipur district. J Geomat 4(1):9–15

  • Deep S, Saklani A (2014) Urban sprawl modeling using cellular automata. Egypt J Remote Sens Space Sci 17(2):179–187

    Google Scholar 

  • DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3(3):178–181

    Article  Google Scholar 

  • Dewan A, Yamaguchi Y (2009) Land use and land cover change in greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl Geogr 29:390–401

    Article  Google Scholar 

  • Dezhkam S, Jabbarian Amiri B, Darvishsefat AA, Sakieh Y (2017) Performance evaluation of land change simulation models using landscape metrics. Geocarto Int 32(6):655–677

    Google Scholar 

  • Dhanaraj K, Angadi DP (2020) Land use land cover mapping and monitoring urban growth using remote sensing and GIS techniques in Mangaluru, India. GeoJournal 1–27. https://doi.org/10.1007/s10708-020-10302-4

  • Dwarakish GS, Ganasri BP (2015) Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geosci 1(1):1115691

    Article  Google Scholar 

  • Eastman JR (2006) IDRISI Andes Tutorial. Clark Labs, Worcester, MA

  • Eastman RJ (1995) IDRISI for Windows: User’s guide (Ver 1.0). Clark University

  • Geist HJ, Lambin EF (2002) Proximate Causes and Underlying Driving Forces of Tropical Deforestation Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52(2):143–150

    Article  Google Scholar 

  • Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011) Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222:3761–3772

    Article  Google Scholar 

  • Halmy MWA, Gessler PE, Hicke JA, Salem BB (2015) Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr 63:101–112

    Article  Google Scholar 

  • Hegazy IR, Helmi MR (2020) Spatial monitoring of urban growth of Mansoura City, Egypt. Int J Low Carbon Technol 15:536–542. https://doi.org/10.1093/ijlct/ctaa021

    Article  Google Scholar 

  • Hu Z, Lo CP (2007) Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban Syst 31(6):667–688

    Article  Google Scholar 

  • Hua L, Tang L, Cui S, Yin K (2014) Simulating urban growth using the SLEUTH model in a coastal peri-urban district in China. Sustain 6:3899–3914

    Article  Google Scholar 

  • Isik S, Kalin L, Schoonover JE, Srivastava P, Lockaby BG (2013) Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach. J Hydrol 485:103–112

    Article  Google Scholar 

  • Jagger P, Perez-Heydrich C (2016) Land use and household energy dynamics in Malawi. Environ Res Lett 11(12):125004

    Article  Google Scholar 

  • Jamali NA, Rahman MT (2016) Utilization of Remote Sensing and GIS to Examine Urban Growth in the City of Riyadh, Saudi Arabia. J Adv Inf Technol 7:297–301. https://doi.org/10.12720/jait.7.4.297-301

  • Jensen JR (1996) Introductory digital image processing: a remote sensing perspective (No. Ed. 2). Prentice-Hall Inc

  • Jensen JR (2007) Remote sensing of vegetation. Remote sensing of the environment: an earth resource perspective. Pearson Prentice Hall, Upper Saddle River, NJ

  • Jin M, Zhang H (2021) Investigating urban land dynamic change and its spatial determinants in Harbin city, China. Eur J Remote Sens 54:155–166. https://doi.org/10.1080/22797254.2020.1758964

    Article  Google Scholar 

  • Kilic S (2006) Environmental monitoring of land use and land cover changes in a Mediterranean region of turkey. Environ Monit Assess 114(1–3):157–168

    Article  Google Scholar 

  • Kundu S, Khare D, Mondal A (2017) Individual and combined impacts of future climate and land use changes on the water balance. Ecol Eng 105:42–57

    Article  Google Scholar 

  • Lambin EF (1997) Modelling and monitoring land-cover change processes in tropical regions. Prog Phys Geogr 21(3):375–393

    Article  Google Scholar 

  • Lambin EF, Rounsevell MDA, Geist HJ (2000) Are agricultural land-use models able to predict changes in land-use intensity? Agri Ecosyst Environ 82(1):321–331

    Article  Google Scholar 

  • Lambin EF, Geist HJ eds (2008) Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics pp.159–174

  • Laurencelle J, Logan T, Gens R (2015) ASF radiometrically terrain corrected ALOS PALSAR products. Alaska Satellite Facility: Fairbanks, Alaska

  • Li X, Yeh AGO (2002) Neural-network based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci 16(4):323–343

    Article  Google Scholar 

  • Liu M, Hu Y, Chang Y, He X, Zhang W (2009) Land use and land cover change analysis and prediction in the upper reaches of the Minjiang River, China. Environ Manag 43(5):899–907

    Article  Google Scholar 

  • Liu T, Yang X (2015) Land change modeling: Status and challenges. In Monitoring and Modeling of Global Changes: A Geomatics Perspective, J Li and X Yang (Eds.), pp-3–16. Dordrecht, the Netherlands: Springer

  • Losiri C, Nagai M, Ninsawat S, Shrestha RP (2016) Modeling urban expansion in Bangkok metropolitan region using demographic–economic data through cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Sustain 8(7):686

    Article  Google Scholar 

  • Lyu R, Clarke KC, Zhang J, Jia X, Feng J, Li J (2019) The impact of urbanization and climate change on ecosystem services: A case study of the city belt along the Yellow River in Ningxia, China. Comput Environ Urban Syst 77:101351

    Article  Google Scholar 

  • Ma Q (2020) Integrating ecological correlation into cellular automata for urban growth simulation: A case study of Hangzhou, China. Urban for Urban Green 51:126697. https://doi.org/10.1016/j.ufug.2020.126697

    Article  Google Scholar 

  • Magliocca NR, Rudel TK, Verburg PH, McConnell WJ, Mertz O, Gerstner K, Heinimann A, Ellis EC (2015) Synthesis in land change science: methodological patterns, challenges, and guidelines. Reg Environ Chang 15(2):211–226

    Article  Google Scholar 

  • Maithani S (2015) Neural networks-based simulation of land cover scenarios in Doon valley, India. Geocarto Int 30:163–185

    Google Scholar 

  • Mallick J, Alwadi H, Rahman A, Ahmed M (2014) Landscape dynamic characteristics using satellite data for a mountainous watershed of Abha, Kingdom of Saudi Arabia. Environ Earth Sci 72(12):4973–4984

    Article  Google Scholar 

  • Mallick J (2016) Geospatial-based soil variability and hydrological zones of Abha semi-arid mountainous watershed, Saudi Arabia. Arab J Geosci 9:281

    Article  Google Scholar 

  • Mallick J, Singh RK, Awadh M, Islam S, Khan RA, Qurashi M (2018) GIS-Based Landslide Susceptibility Evaluation Using Fuzzy-AHP Multi Criteria Decision Making Techniques in the Abha Watershed, Saudi Arabia. Environ Earth Sci 77:276

    Article  Google Scholar 

  • Mallick J, AlMesfer MK, Singh VP, Falqi II, Singh CK, Alsubih M, Kahla NB (2021) Evaluating the NDVI–Rainfall Relationship in Bisha Watershed, Saudi Arabia Using Non-Stationary Modeling Technique. Atmos 12(5):593

    Article  Google Scholar 

  • Memarian H, Balasundram SK, Talib JB, Sung CTB, Sood AM, Abbaspour K (2012) Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J Geogr Inf Syst 542–554

  • Miller EJ, Kriger DS, Hunt JD (1999) TCRP web document 9: Integrated urban models for simulation of transit and land-use policies. Final report. University of Toronto Joint Program in Transportation and DELCAN Corporation, Toronto, Cananda

  • Mitsova D, Shuster W, Wang X (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99:141–153

    Article  Google Scholar 

  • Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute" Jovan Cvijic", SASA 64(1):111–127

  • Mozumder C, Tripathi NK (2014) Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland Deepor Beel in Northeast India using a multi-layer perceptron neural network. Int J Appl Earth Obs Geoinf 32:92–104

    Google Scholar 

  • Oñate-Valdivieso F,  Sendra JB (2010) Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling. J Hydrol 395(3-4):256–263

  • Overmars KP, de Koning GHJ, Veldkamp A (2003) Spatial autocorrelation in multi-scale land use models. Ecol Model 164:257–270

    Article  Google Scholar 

  • Ozturk D (2015) Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sens 7(5):5918–5950

  • Palacios-Agundez I, Onaindia M, Barraqueta P, Madariaga I (2015) Provisioning ecosystem services supply and demand: The role of landscape management to reinforce supply and promote synergies with other ecosystem services. Land Use Policy 47:145–155

    Article  Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann Assoc Am Geograph 93(2):314–337

    Article  Google Scholar 

  • Pellikka P, Alshaikh AY (2016) Remote sensing of the decrease of juniper woodlands in the mountains of southwestern Saudi Arabia—Reasons and consequences. Arab J Geosci 9:1–12

    Article  Google Scholar 

  • Postel SL, Thompson BH (2005) Watershed protection: capturing the benefits of nature's water supply services In Natural Resources Forum (Vol. 29, No. 2, pp. 98–108). Oxford, UK: Blackwell Publishing, Ltd

  • Rahman M (2016) Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. ISPRS Int J Geo Inf 5:15

    Article  Google Scholar 

  • Raju K, Kumar RA (2006) Land use changes in Udumbanchola taluk, Idukki district-Kerala: an analysis with the application of remote sensing data. J Ind Soc Remote Sens 34(2):161–169

    Article  Google Scholar 

  • Reddy CS, Singh S, Dadhwal VK, Jha CS, Rao NR, Diwakar PG (2017) Predictive modelling of spatial patterms of past and future forest cover changes in India. J Earth Syst Sci 126(1):8

    Article  Google Scholar 

  • Regmi RR, Saha SK, Subedi DS (2017) Geospatial analysis of land use land cover change modeling in Phewa Lake watershed of Nepal by using GEOMOD model. Himal Phys 65–72

  • Rosenfield GH, Fitzpatrick-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sensing 52(2):223–227

  • Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math Comput Model 54(3-4):938–943

  • Sardar P, Samadder SR (2021) Understanding the dynamics of landscape of greater Sundarban area using multi-layer perceptron Markov chain and landscape statistics approach. Ecol Indic 121:106914

    Article  Google Scholar 

  • Selim ME (2009) Environmental security in the Arab World. In Facing Global Environmental Change: Environmental, Human, Energy, Food, Health and Water Security Concepts; Brauch, H.G., Spring, Ú.O., Grin, J., Mesjasz, C., Kameri-Mbote, P., Behera, N.C., Chourou, B., Krummenacher, H., Eds.; Springer: Berlin/Heidelberg, Germany, pp 843–853

  • Shahi E, Karimi S, Jafari HR (2020) Monitoring and modeling land use/cover changes in Arasbaran protected Area using and integrated Markov chain and artificial neural network. Model Earth Syst Environ 6:1901–1911

    Article  Google Scholar 

  • Sharma L, Pandey PC, Nathawat MS (2012) Assessment of land consumption rate with urban dynamics change using geospatial techniques. J Land Use Sci 7(2):135–148

    Article  Google Scholar 

  • Singh S, Reddy CS, Pasha SV, Dutta K, Saranya KRL, Satish KV (2017) Modeling the spatial dynamics of deforestation and fragmentation using Multi-Layer Perceptron neural network and landscape fragmentation tool. Ecol Eng 99:543–551

    Article  Google Scholar 

  • Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T (2015) Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ Proces 2(1):61–78

    Article  Google Scholar 

  • Sohngen B, Mendelsohn R, Sedjo R (1999) Forest management, conservation and global timber markets. Am J Agric Econ 81(1):1–13

    Article  Google Scholar 

  • Stehman S (1996) Estimating the kappa coefficient and its variance under stratified random sampling. Photogramm Eng Remote Sensing 62(4):401–407

  • Subedi P, Subedi K, Thapa B (2013) Application of a hybrid cellular automaton–Markov (CA-Markov) model in land-use change prediction: a case study of Saddle Creek Drainage Basin, Florida. Appl Ecol Environ Sci 1(6):126–132

    Google Scholar 

  • Sun Q, Wu Z, Tan J (2012) The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ Earth Sci 65(6):1687–1694

    Article  Google Scholar 

  • Tadese M, Kumar L, Koech R, Kogo BK (2020) Mapping of land-use/land-cover changes and its dynamics in Awash River Basin using remote sensing and GIS. Remote Sens Appl: Soc Environ 19:100352

    Google Scholar 

  • TerrSet (2020) Geospatial Monitoring and Modeling System. Clark University, Clark Labs

    Google Scholar 

  • US EPA (Environmental Protection Agency) (2000) Projecting Land-Use Change: A summary of Models for Assessing the Effects of Community Growth and Change on Land-Use Patterns. Cincinnati, OH: US Environmental Protection Agency, Office of Research and Development

  • van Vliet J, Bregt AK, Brown DG, van Delden H, Heckbert S, Verburg PH (2016) A review of current calibration and validation practices in land-change modeling. Environ Model Softw 82:174–182

    Article  Google Scholar 

  • Varga OG, Pontius RG Jr, Singh SK, Szabó S (2019) Intensity Analysis and the Figure of Merit’s components for assessment of a Cellular Automata–Markov simulation model. Ecol Indic 101:933–942

    Article  Google Scholar 

  • Veldkamp A, Lambin EF (2001) Predicting Land-Use Change. Agr Ecosyst Environ 85(1–3):1–6

    Article  Google Scholar 

  • Verburg PH, Kok K, Pontius RG Jr, Veldkamp P (2006) Modeling land-use and land cover change. In: Lambin EF, Geist H (eds) Land-use and Land-cover Change. Springer, Berlin, Germany, pp 117–135

    Chapter  Google Scholar 

  • Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: Current practice and research priorities. GeoJournal 61(4):309–324

    Article  Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SS (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag 30:391–405

    Article  Google Scholar 

  • Warrag EI, Mallick J, Singh RK, Khan RA (2019) Status of dieback of Juniperus procera (African pencil cedar) in natural stands and plantation in Alsouda Highlands, Saudi Arabia. Appl Ecol Environ Res 17(2):2325–2338

    Article  Google Scholar 

  • Xie Y, Batty M, Zhao K (2007) Simulating emergent urban form usiung agent-based modelling: Desakota in the Suzhou-Wuxian region in China. Ann Assoc Am Geogr 97(3):477–495

    Article  Google Scholar 

  • Yirsaw E, Wu W, Shi X, Temesgen H, Bekele B (2017) Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustain 9(7):1204

    Article  Google Scholar 

  • Zare M, Mohammady M, Pradhan B (2017) Modeling the effect of land use and climate change scenarios on future soil loss rate in Kasilian watershed of northern Iran. Environ Earth Sci 76(8):305

    Article  Google Scholar 

  • Zeng C, Liu Y, Stein A, Jiao L (2015) Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China. Int J Appl Earth Obs Geoinf 34:10–24

    Google Scholar 

  • Zolin CA (2010) Analise e otimizaç~ao de projetos de Pagamentos por Serviços Ambientais (PSA) utilizando Sistemas de Informaç~oes Geograficas (SIG)- o caso do município de Extrema, MG. Tese (Doutorado em Ci^encias). Universidade de S~ao Paulo, Piracicaba

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (R.G.P2 /75/41)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Mallick.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Communicated by: H. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqadhi, S., Mallick, J., Balha, A. et al. Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir, Saudi Arabia. Earth Sci Inform 14, 1547–1562 (2021). https://doi.org/10.1007/s12145-021-00633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-021-00633-2

Keywords

Navigation