Skip to main content
Log in

Tornadoes in the Russian Regions

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

New data are presented on tornadoes over land in Russia for the period of 1900–2018 based on various sources. In total, information on 1763 tornadoes was collected, including 993 tornadoes from eyewitness reports on tornado passage and/or associated impacts and 770 tornadoes from satellite data on tornado-induced windthrows. Both single tornadoes and tornado outbreaks, the cases of formation of several tornadoes within one meso- or synoptic-scale system, were reported. On average for 2009–2018, more than 100 tornadoes are observed in Russia per year, including 15 significant tornadoes (with a wind speed \({>}50\) m/s) and one intense tornado (with a wind speed \({>}70\) m/s). In some years, these rates can be significantly higher and reach 342, 52, and three tornadoes per year, respectively. Tornadoes are observed on about 41 days per year, up to 68 days per annum in some years. The frequency of occurrence of tornadoes of different categories and the probability of their passage over a point on the ground were estimated. These estimates can be further used to assess a risk of tornado-hazardous situations. The general underestimation of the number of tornadic events in routine meteorological observations and existent statistics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Act of Inspection of the Consequences of the Natural Hazard Passage (June 29, 2017) (Permskii TsGMS, Perm, 2017) [in Russian].

  2. S. A. Bartalev, V. A. Egorov, D. V. Ershov, A. S. Isaev, E. A. Loupian, D. E. Plotnikov, and I. A. Uvarov, “Mapping Russia’s Vegetation Cover Using MODIS Satellite Spectroradiometer Data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 4, 8 (2011) [in Russian].

    Google Scholar 

  3. O. N. Bulygina, V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova, Description of the Dataset of Observational Data on Major Meteorological Parameters from Russian Weather Stations, Database State Registration Certificate No. 2014620549 (2014) [in Russian].

  4. A. A. Vasil’ev, B. E. Peskov, and A. I. Snitkovskii, “Tornadoes, Squalls, and Hailstorm on June 8–9, 1984,” Meteorol. Gidrol., No. 8 (1985) [Sov. Meteorol. Hydrol., No. 8 (1985)].

  5. State Report “On the State and Protection of the Environment in the Russian Federation in 2017” (Minpripody Rossii, NPP Kadastr, Moscow, 2018) [in Russian].

  6. T. G. Dmitrieva and B. E. Peskov, “Synoptic Conditions, Nowcasting, and Numerical Prediction of Severe Squalls and Tornados in Bashkortostan on June 1, 2007 and August 29, 2014,” Meteorol. Gidrol., No. 10 (2016) [Russ. Meteorol. Hydrol., No. 10, 41 (2016)].

  7. Intense Atmospheric Vortices and Their Dynamics, Ed. by I. I. Mokhov, M. V. Kurgansky, and O. G. Chkhetiani (GEOS, Moscow, 2018) [in Russian].

  8. Results of the Russian Census of 2010, Vol. 1: Population Size in Administrative-territorial Units of the Subjects of the Russian Federation (Rosstat, Moscow, 2010) [in Russian].

  9. M. V. Kurgansky, “The Statistical Distribution of Intense Moist-Convective Spiral Vortices in the Atmosphere,” Dokl. Akad. Nauk, 371 (2000) [Dokl. Earth Sci., No. 2, 371 (2000)].

  10. M. V. Kurgansky, A. V. Chernokulsky, and I. I. Mokhov, “The Tornado over Khanty-Mansiysk: An Exception or a Symptom?”, Meteorol. Gidrol., No. 8 (2013) [Russ. Meteorol. Hydrol., No. 8, 38(2013)].

    Article  Google Scholar 

  11. I. I. Mokhov and M. G. Akperov, “Tropospheric Lapse Rate and Its Relation to Surface Temperature from Reanalysis Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 4, 42 (2006)].

    Article  Google Scholar 

  12. M. A. Novitskii, Yu. B. Pavlyukov, B. Ya. Shmerlin, S. V. Makhnorylova, N. I. Serebryannik, S. A. Petrichenko, L. A. Tereb, and O. V. Kalmykova, “The Tornado in Bashkortostan: The Potential of Analyzing and Forecasting Tornado-risk Conditions,” Meteorol. Gidrol., No. 10 (2016) [Russ. Meteorol. Hydrol., No. 10, 41 (2016)].

    Article  Google Scholar 

  13. M. A. Novitskii, B. Ya. Shmerlin, S. A. Petrichenko, L. A. Tereb, L. K. Kulizhnikova, and O. V. Kalmykova, “Using the Indices of Convective Instability and Meteorological Parameters for Analyzing the Tornado-risk Conditions in Obninsk on May 23, 2013,” Meteorol. Gidrol., No. 2 (2015) [Russ. Meteorol. Hydrol., No. 2, 40 (2015)].

    Article  Google Scholar 

  14. Estimation of Permanent Population as of January 1, 2020 and the Average for 2019 (Federal’naya Sluzhba Gosudarstvennoi Statistiki, 2020) [in Russian].

  15. Natural Hazards in Russia, Vol. 5: Hydrometeorological Hazards, Ed. by G. S. Golitsyn and A. A. Vasil’ev (Kruk, Moscow, 2001) [in Russian].

  16. “Recommendations on Estimating Tornado Characteristics for Atomic Energy Facilities,” Vestnik Gosatomnadzora Rossii, No. 1 (2002) [in Russian].

  17. S. O. Romanskii, E. M. Verbitskaya, S. V. Ageeva, and D. P. Istomin, “Tornado in the City of Blagoveshchensk on July 31, 2011”, Meteorol. Gidrol., No. 9 (2018) [Russ. Meteorol. Hydrol., No. 9, 43 (2018)].

    Article  Google Scholar 

  18. Information about Adverse Weather Conditions and Hydrometeorological Hazards That Caused Social and Economic Damage on the Territory of Russia (VNIIGMI-MTsD, Obninsk, 2020) [in Russian].

  19. A. I. Snitkovskii, “Tornados in the USSR,” Meteorol. Gidrol., No. 9 (1987) [Sov. Meteorol. Hydrol., No. 9 (1987)].

  20. A. V. Chernokulsky, F. A. Kozlov, O. G. Zolina, O. N. Bulygina, and V. A. Semenov, “Climatology of Precipitation of Different Genesis in Northern Eurasia,” Meteorol. Gidrol., No. 7 (2018) [Russ. Meteorol. Hydrol., No. 7, 43 (2018)].

    Article  Google Scholar 

  21. A. V. Chernokulsky, M. V. Kurgansky, D. I. Zakharchenko, and I. I. Mokhov, “Genesis Environments and Characteristics of the Severe Tornado in the South Urals on August 29, 2014,” Meteorol. Gidrol., No. 12 (2015) [Russ. Meteorol. Hydrol., No. 12, 40 (2015)].

    Article  Google Scholar 

  22. A. V. Chernokulsky, M. V. Kurgansky, and I. I. Mokhov, “Analysis of Changes in Tornadogenesis Conditions over Northern Eurasia Based on a Simple Index of Atmospheric Convective Instability,” Dokl. Akad. Nauk, 477 (2017) [Dokl. Earth Sci., No. 2, 477 (2017)].

  23. C. J. Anderson, C. K. Wikle, Q. Zhou, and J. A. Royle, “Population Influences on Tornado Reports in the United States,” Wea. Forecast., 22 (2007).

    Article  Google Scholar 

  24. B. Antonescu, D. M. Schultz, A. Holzer, and P. Groenemeijer, “Tornadoes in Europe: An Underestimated Threat,” Bull. Amer. Meteorol. Soc., 98 (2017).

  25. H. E. Brooks, C. A. Doswell III, X. Zhang, A. V. Chernokulsky, E. Tochimoto, B. Hanstrum, E. de L. Nascimento, D. M. L. Sills, B. Antonescu, and B. Barrett, “A Century of Progress in Severe Convective Storm Research and Forecasting,” Meteorological Monographs, 59 (2019).

    Article  Google Scholar 

  26. V. Y. S. Cheng, G. B. Arhonditsis, D. M. L. Sills, W. A. Gough, and H. Auld, “Predicting the Climatology of Tornado Occurrences in North America with a Bayesian Hierarchical Modeling Framework,” J. Climate, 29 (2016).

    Article  Google Scholar 

  27. A. Chernokulsky, F. Kozlov, O. Zolina, O. Bulygina, I. I. Mokhov, and V. A. Semenov, “Observed Changes in Convective and Stratiform Precipitation in Northern Eurasia over the Last Five Decades,” Environ. Res. Lett., 14 (2019).

  28. A. V. Chernokulsky, M. V. Kurgansky, and I. I. Mokhov, “On Characteristic Reanalysis-based Values of Convective Instability Indices for Northern Eurasia Tornadoes,” IOP Conference Series: Earth and Environmental Science, 231 (2019).

  29. A. Chernokulsky, M. Kurgansky, I. Mokhov, A. Shikhov, I. Azhigov, E. Selezneva, D. Zakharchenko, B. Antonescu, and T. Kuhne, “Tornadoes in Northern Eurasia: From the Middle Age to the Information Era,” Mon. Wea. Rev., 148 (2020).

    Article  Google Scholar 

  30. A. Chernokulsky and A. Shikhov, “1984 Ivanovo Tornado Outbreak: Determination of Actual Tornado Tracks with Satellite Data,” Atmos. Res., 207 (2018).

    Article  Google Scholar 

  31. T. A. Coleman and P. G. Dixon, “An Objective Analysis of Tornado Risk in the United States,” Wea. Forecast., 29 (2014).

    Article  Google Scholar 

  32. C. A. Doswell III, A Guide to F-scale Damage Assessment (U.S. Department of Commerce, Silver Spring, Maryland, 2003).

  33. C. A. Doswell III and D. W. Burgess, “On Some Issues of United States Tornado Climatology,” Mon. Wea. Rev., 116 (1998).

    Article  Google Scholar 

  34. N. Dotzek, M. V. Kurgansky, J. Grieser, B. Feuerstein, and P. Nevir, “Observational Evidence for Exponential Tornado Intensity Distributions over Specific Kinetic Energy,” Geophys. Res. Lett., 32 (2005).

  35. R. Edwards, J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, “Tornado Intensity Estimation: Past, Present, and Future,” Bull. Amer. Meteorol. Soc., 94 (2013).

    Article  Google Scholar 

  36. B. Feuerstein, P. Groenemeijer, E. Dirksen, M. Hubrig, A. M. Holzer, and N. Dotzek, “Towards an Improved Wind Speed Scale and Damage Description Adapted for Central Europe,” Atmos. Res., 100 (2011).

    Article  Google Scholar 

  37. J. Finch and D. Bikos, “Russian Tornado Outbreak of 9 June 1984,” E-Journal of Severe Storms Meteorol., 7 (2012).

  38. T. T. Fujita, “Tornadoes and Downbursts in the Context of Generalized Planetary Scales,” J. Atmos. Sci., 38 (1981).

    Article  Google Scholar 

  39. J. Grieser and P. Haines, “Tornado Risk Climatology in Europe,” Atmosphere, 11 (2020).

  40. P. Groenemeijer, A. M. Holzer, M. Hubrig, T. Kuhne, L. Bock, J. de D. Soriano, D. Gutierrez-Rubio, R. Kaltenberger, B. van der Ploeg, and G. Strommer, The International Fujita (IF) Scale (ESSL, Wesslingm, 2018).

  41. P. Groenemeijer and T. Kuhne, “A Climatology of Tornadoes in Europe: Results from the European Severe Weather Database,” Mon. Wea. Rev., 142 (2014).

    Article  Google Scholar 

  42. P. Groenemeijer, T. Pucik, A. M. Holzer, B. Antonescu, K. Riemann-Campe, D. M. Schultz, T. Kuhne, B. Feuerstein, H. E. Brooks, C. A. Doswell III, H.-J. Koppert, and R. Sausen, “Severe Convective Storms in Europe: Ten Years of Research and Education at the European Severe Storms Laboratory,” Bull. Amer. Meteorol. Soc., 98 (2017).

    Article  Google Scholar 

  43. S. Grunwald and H. E. Brooks, “Relationship between Sounding Derived Parameters and the Strength of Tornadoes in Europe and the USA from Reanalysis Data,” Atmos. Res., 100 (2011).

    Article  Google Scholar 

  44. O. Hyvarinen and E. Saltikoff, “Social Media as a Source of Meteorological Observations,” Mon. Wea. Rev., 138 (2010).

    Article  Google Scholar 

  45. M. Y. Lyakhov, “Tornadoes in the Midland Belt of Russia,” Sov. Geogr., No. 6 (1987).

    Article  Google Scholar 

  46. C. K. Potvin, C. Broyles, P. S. Skinner, H. E. Brooks, and E. Rasmussen, “A Bayesian Hierarchical Modeling Framework for Correcting Reporting Bias in the U.S. Tornado Database,” Wea. Forecast., 34 (2019).

  47. A. T. Radler, P. H. Groenemeijer, E. Faust, R. Sausen, and T. Pucik, “Frequency of Severe Thunderstorms across Europe Expected to Increase in the 21st century due to Rising Instability,” Nature Partner Journal Climate and Atmospheric Science, 2 (2019).

    Article  Google Scholar 

  48. J. T. Schaefer, D. L. Kelly, and R. F. Abbey, “A Minimum Assumption Tornado-hazard Probability Model,” J. Appl. Meteorol. Climatol., 25 (1986).

    Article  Google Scholar 

  49. A. Shikhov and A. Chernokulsky, “A Satellite-derived Climatology of Unreported Tornadoes in Forested Regions of Northeast Europe,” Rem. Sens. Environ., 204 (2018).

    Article  Google Scholar 

  50. A. Shikhov, A. Chernokulsky, I. Azhigov, and A. Semakina, “A Satellite-derived Database for Stand-replacing Windthrows in Boreal Forests of the European Russia in 1986–2017,” Earth Syst. Sci. Data (2020) [submitted].

  51. M. K. Tippett, J. T. Allen, V. A. Gensini, and H. E. Brooks, “Climate and Hazardous Convective Weather,” Current Climate Change Reports, 1 (2015).

    Article  Google Scholar 

  52. K. S. Virts, J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, “Highlights of a New Ground-based, Hourly Global Lightning Climatology,” Bull. Amer. Meteorol. Soc., 94 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernokulsky.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 2, pp. 17-34. https://doi.org/10.52002/0130-2906-2021-2-17-34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernokulsky, A.V., Kurgansky, M.V., Mokhov, I.I. et al. Tornadoes in the Russian Regions. Russ. Meteorol. Hydrol. 46, 69–82 (2021). https://doi.org/10.3103/S1068373921020023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921020023

Keywords

Navigation