Skip to main content
Log in

Simulation of Air Pollution in Almaty City under Adverse Weather Conditions

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The problem of air pollution in Almaty city in stagnant weather conditions is considered. Such conditions are so frequent, because the city is located at the foothills of the mountain range of Ile Alatau. The WRF-Chem complex model is used for the analysis and allows a high-detail simulation both of the atmospheric circulation and the transport of various pollutants, taking into account their chemical transformations. The results of modeling meteorological processes are compared with observational data. The main attention is paid to the calculation of the sulfur dioxide plume emitted by the pipes of the coal-fired CHP-2. The simulations showed that regional latitudinal wind, whose direction regularly changes to the opposite one, dominates in the northern part of the city atmosphere. During such periods and under unstable atmosphere stratification conditions, the plume dissipates and pollutants penetrate into the surface layer. In some areas, the concentration of SO2 significantly exceeds sanitary standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. R. A. Anthes, Y.-H. Kuo, D. P. Baumhefner, R. M. Errico, and T. W. Bettge, “Predictability of Mesoscale Atmospheric Motions,” in Weather Dynamics, Ed. by S. Manabe (Gidrometeoizdat, Leningrad, 1988) [Transl. from English].

  2. N. F. Vel’tishchev and V. D. Zhupanov, “Numerical Weather Prediction with WRF-ARW and WRF-NMM Common-use Nonhydrostatic Models,” in 80 Years to the Hydrometcenter of Russia (Triada LTD, Moscow, 2010) [in Russian].

  3. N. F. Gel’mgol’ts, Mountain-valley Circulation on Northern Slopes of Tian Shan (Gidrometeoizdat, Leningrad, 1963) [in Russian].

  4. E. A. Zakarin, L. A. Balakay, K. A. Bostanbekov, T. V. Dedova, and R. A. Zhetpisov, “Mathematical Modeling of the City Air Pollution Risks,” Gidrometeorologiya i Ekologiya, No. 2 (2019) [in Russian].

  5. E. A. Zakarin, T. V. Dedova, B. M. Mirkarimova, N. A. Yakovleva, and E. K. Sadvakasov, “Numerical Simulations of the Impact of Mountain-valley Circulation on the Almaty City Air Pollution,” Gidrometeorologiya i Ekologiya, No. 2 (2018) [in Russian].

  6. E. K. Isaev, S. V. Mostamandi, and O. G. Aniskina, “Assessing the Effect of Parameterization of Physical Processes in the WRF Hydrodynamic Model on the Skill of Forecasting Atmospheric Processes in the Area with Complex Terrain: A Case Study for the Territory of Kyrgyzstan,” Uchenye Zapiski RGGMU, No. 40 (2015) [in Russian].

  7. Climate of Almaty, Ed. by Kh. A. Akhmetzhanov and I. A. Shver (Gidrometeoizdat, Leningrad, 1986) [in Russian].

  8. V. V. Penenko and E. A. Tsvetkova, “Mathematical Modeling of Climate and Ecological Processes in Urban Areas,” Optika Atmosfery i Okeana, No. 6, 30 (2017) [in Russian].

  9. E. A. P’yanova and L. M. Faleichik, “Informational-computational Technology for Scenario Assessment of Atmospheric Dynamics and Air Quality,” Vychislitel’nye Tekhnologii, No. 1, 17 (2012) [in Russian].

    Google Scholar 

  10. A. Baklanov, B. Cardenas, T. Lee, S. Leroyerd, V. Massone, L. Molina, T. Muller, C. Ren, F. Vogel, and J. Voogt, “Integrated Urban Services: Experience from Four Cities on Different Continents,” Urban Climate, 32 (2020).

    Article  Google Scholar 

  11. J.-W. Bao, S. A. Michelson, P. O. G. Persson, I. Djalalova, and J. M. Wilczak, “Observed and Simulated Low Level Winds in an Episode Case of the Central California Ozone Study,” J. Appl. Meteorol. Climate, 47 (2008).

    Article  Google Scholar 

  12. P. Bougeault and P. Lacarrere, “Parameterization of Orography-induced Turbulence in a Mesobeta-scale Model,” Mon. Wea. Rev., No. 8, 117 (1989).

    Article  Google Scholar 

  13. G. Grell, J. Fast, W. I. Gustafson, S. E. Peckham, S. McKeen, M. Salzmann, and S. Freita, “On-line Chemistry within WRF: Description and Evaluation of a State-of-the-art Multiscale Air Quality and Weather Prediction Model,” in Integrated Systems of Meso-meteorological and Chemical Transport Models (Springer, 2010).

  14. M. J. Iacono, J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, “Radiative Forcing by Long-lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models,” J. Geophys. Res. Atmos., No. D13, 113 (2008).

  15. J. S. Kain, “The Kain–Fritsch Convective Parameterization: An Update,” J. Appl. Meteorol., No. 1, 41 (2004).

    Article  Google Scholar 

  16. A. Martilli, A. Clappier, and M. W. Rotach, “An Urban Surface Exchange Parameterization for Mesoscale Models,” Boundary Layer Meteorol., 104 (2002).

    Article  Google Scholar 

  17. A. Martilli, S. G. Clarke, M. Tewari, and K. W. Manning,Description of the Modifications Made in WRF.3.1 and Short User’s Manual of BEP, NCAR Doc. (2009), https://docplayer.net/65315374-Description-of-the-modifications-made-in-wrf-3-1-and-short-user-s-manual-of-bep.html.

  18. D. Maureeab, M. Nadege, and A. Clappiera, “Multi-scale Modeling of the Urban Meteorology: Integration of a New Canopy Model in the WRF Model,” Urban Climate, 26 (2018).

    Article  Google Scholar 

  19. Th. Nehrkorn, J. Henderson, M. Leidner, M. Mountain, J. Eluszkiewicz, K. McKain, and S. Wofsy, “WRF Simulations of the Urban Circulation in the Salt Lake City Area for CO2 Modeling,” J. Appl. Meteorol. Climatol., No. 2, 52 (2013).

    Article  Google Scholar 

  20. F. Salamanca, A. Martilli, and C. Yague, “A Numerical Study of the Urban Heat Island over Madrid during the DESIREX (2008) Campaign with WRF and an Evaluation of Simple Mitigation Strategies,” Int. J. Climatol., 32 (2012).

    Article  Google Scholar 

  21. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G. Powers, M. G. Duda, D. M. Barke, and X.-Y. Huang, A Description of the Advanced Research WRF Version 4, NCAR Tech. Note NCAR/TN-556+STR.

  22. W. Stockwell, P. Middelton, and J. Chang, “The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling,” J. Geophys. Res. Atmos., No. D10, 95 (1990).

    Article  Google Scholar 

  23. Y. Zhang, M. K. Dubey, S. C. Olsen, J. Zheng, and R. Zhang, “Comparisons of WRF/Chem Simulations in Mexico City with Ground-based RAMA Measurements during the 2006-MILAGRO,” Atmos. Chem. Phys., 9 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Dedova.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 2, pp. 88-98. https://doi.org/10.52002/0130-2906-2021-2-88-98.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakarin, E.A., Baklanov, A.A., Balakay, L.A. et al. Simulation of Air Pollution in Almaty City under Adverse Weather Conditions. Russ. Meteorol. Hydrol. 46, 121–128 (2021). https://doi.org/10.3103/S1068373921020072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921020072

Keywords

Navigation