Skip to main content
Log in

Study of Hydrogen Adsorption on a Monolayer Tis3 Decorated with Mg Cations

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In this study, the electron density functional theory method is used to obtain maps of the electron density distribution for a monolayer TiS3. The adsorption of H2 on the surface of a monolayer TiS3 decorated with Mg cations is studied. The adsorption energy is –0.156 eV/molecule, which is a fairly high value, and allows us to consider this material as promising for creating hydrogen storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Dunn, S., Hydrogen futures: Toward a sustainable energy system, Int. J. Hydrogen Energy, 2002, vol. 27, no. 3, pp. 235–264.

    Article  CAS  Google Scholar 

  2. Putungan, D.B., Lin, S.H., Wei, C.M., and Kuo, J.L., Li adsorption, hydrogen storage and dissociation using monolayer MoS2: An ab initio random structure searching approach, Phys. Chem. Chem. Phys., 2015, vol. 17, no. 17, pp. 11367–11374.

    Article  CAS  Google Scholar 

  3. Bhatia, S.K. and Myers, A.L., Optimum conditions for adsorptive storage, Langmuir, 2006, vol. 22, no. 4, pp. 1688–1700.

    Article  CAS  Google Scholar 

  4. Park, N., Choi, K., Hwang, J., Kim, D.W., Kim, D.O., and Ihm, J., Progress on first-principles-based materials design for hydrogen storage, Proc. Natl. Acad. Sci., 2012, vol. 109, no. 49, pp. 19893–19899.

    Article  CAS  Google Scholar 

  5. Karpova, S.S., Kompan, M.E., and Maksimov, A.I., Osnovy vodorodnoi energetiki (Basics of Hydrogen Energy), 2nd ed., St., Petersburg: SPbGETU LETI, 2011.

  6. Dou, Z.A., Ao, S., Xu, Z., Jiang, Q., and Wang, G., Hydrogen storage in porous graphene with Al decoration, J., Hydrogen Energ., 2014, vol. 39, pp. 16244–1625.

    Article  Google Scholar 

  7. Reardon, H., Hanlon, J.M., Hughes, R.W., Godula-Jopek, A., Mandal, T.K., and Gregory, D.H., Emerging concepts in solid-state hydrogen storage: The role of nanomaterials design, Energy Environ. Sci., 2012, vol. 5, no. 3, pp. 5951–5979.

    Article  CAS  Google Scholar 

  8. Van den Berg, A.W.C. and Areán, C.O., Materials for hydrogen storage: Current research trends and perspectives, Chem. Commun., 2008, no. 6, pp. 668–681.

  9. Samanta, A., Furuta, T., and Li, J., Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials, J. Chem. Phys., 2006, vol. 125, no. 8, p. 084714.

    Article  Google Scholar 

  10. Ataca, C., Aktürk, E., Ciraci, S., and Ustunel, H., High-capacity hydrogen storage by metallized graphene, Appl. Phys. Lett., 2008, vol. 93, no. 4, p. 103109.

    Article  Google Scholar 

  11. Haldar, S., Mukherjee, S., Ahmed, F., and Veer, C., A first principles study of hydrogen storage in lithium decorated defective phosphorene, Int. J. Hydrogen Energy, 2017, pp. 1–10.

  12. Hashmi, A., Farooq, M.U., Khan, I., Son, J., and Hong, J., Ultra-high capacity hydrogen storage in a Li decorated two-dimensional C2N layer, J. Mater. Chem. A, 2017, vol. 5, no. 6, pp. 2821–2828.

    Article  CAS  Google Scholar 

  13. Schoen, A.H., Reflections concerning triply-periodic minimal surfaces, Interface Focus, 2012, vol. 2, no. 5, pp. 658–668.

    Article  Google Scholar 

  14. Shevchenko, V.Ya., Sychev, M.M., Lapshin, A.E., Lebedev, L.A., Gruzdkov, A.A., and Glezer, A.M., Polymer structures with the topology of triply periodic minimal surfaces, Glass Phys. Chem., 2017, vol. 43, no. 6, pp. 608–610.

    Article  CAS  Google Scholar 

  15. Mohsenizadeh, M., Gasbarri, F., Munther, M., Beheshti, A., and Davami, K., Additively-manufactured lightweight metamaterials for energy absorption, Mater. Des., 2018, vol. 139, pp. 521–530.

    Article  CAS  Google Scholar 

  16. Lu, T.J., Stone, H.A., and Ashby, M.F., Heat transfer in open-cell metal foams, Acta Mater., 1998, vol. 46, no. 10, pp. 3619–3635.

    Article  CAS  Google Scholar 

  17. Yuan, S., Shen, F., Bai, J., Chua, C.K., Wei, J., and Zhou, K., 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization, Mater. Des., 2017, vol. 120, pp. 317–327.

    Article  CAS  Google Scholar 

  18. Von Schnering, H.G. and Nesper, R., How nature adapts chemical structures to curved surfaces, Angew. Chem. Int. Ed., 1987, vol. 26, no. 11, pp. 1059–1080.

    Article  Google Scholar 

  19. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868.

    Article  CAS  Google Scholar 

  20. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Ismaila Dabo, A., dal Corso, S., de Gironcoli, Fabris, S., Fratesi, G., Gebauer, R., et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 2009, vol. 21, no. 39, p. 395502.

    Google Scholar 

  21. Pack, J.D. and Monkhorst, H.J., Special points for Brillouin zone integrations, Phys. Rev. B, 1977, vol. 16, no. 4, pp. 1748–1749.

    Article  Google Scholar 

  22. Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011 vol. 44, no. 6, pp. 1272–1276.

    Article  CAS  Google Scholar 

  23. Ishii, A., Yamamoto, M., Asano, H., and Fujiwara, K., DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nanotube functionalization, J. Phys.: Conf. Ser., 2008, vol. 100, no. 5, p. 52087.

    Google Scholar 

  24. Arsentev, M.Y., Petrov, A.V., Missyul, A.B., and Hammouri, M., Exfoliation, point defects and hydrogen storage properties of monolayer TiS3: An ab initio study, RSC Adv., 2018, vol. 8, no. 46, pp. 26169–26179.

    Article  CAS  Google Scholar 

  25. Zhang, Y., Wu, X., Tao, Y., Mao, C., and Zhu, J., Fabrication and field-emission performance of zirconium disulfide nanobelt arrays, Chem. Commun., 2008, no. 23, pp. 2683–2685.

  26. Pickard, C.J. and Needs, R.J., Ab initio random structure searching, J. Phys.: Condens. Matter, 2011, vol. 23, no. 5, pp. 0953–8984.

  27. Liu, P., Zhang, H., Cheng, X., and Tang, Y., External electric field: An effective way to prevent aggregation of Mg atoms on γ-graphyne for high hydrogen storage capacity, Appl. Surf. Sci., 2016, vol. 371, pp. 44–49.

    Article  CAS  Google Scholar 

  28. Arsentev, M., Hammouri, M., Missyul, A., and Petrov, A., Complex interaction of hydrogen with the monolayer TiS2 decorated with Li and Li2O clusters: An ab initio random structure searching approach, Int. J. Hydrogen Energy, 2019, vol. 44, no. 39, pp. 21988–21998.

    Article  CAS  Google Scholar 

Download references

Funding

FUNDING

The study was supported by a grant from the Russian Science Foundation (project no. 20-73-10171).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kalinina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, M.V., Arsent’ev, M.Y. & Balabanov, S.V. Study of Hydrogen Adsorption on a Monolayer Tis3 Decorated with Mg Cations. Glass Phys Chem 47, 270–275 (2021). https://doi.org/10.1134/S1087659621030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621030044

Keywords:

Navigation