Skip to main content
Log in

Effect of Annealing on Structure and Physicochemical Properties of (Ge20Se18Te62)100 – xIx, Where x = 0, 8

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In this paper we report the structural, thermal, microstructural and infrared transmission properties of iodine doped (Ge20Se18Te62)100 – xIx (where x = 0, 8) chalco-halide glasses. The density of the specimen has been calculated experimentally. Differential thermal calorimetry shows a single glass transition temperature but two crystalline peaks. The role of annealing (503 and 593 K for 2 h) has also been taken into account to investigate the structural, microstructural, and infrared transmission properties. X-ray diffraction study has revealed that on annealing there is an origin of hexagonal Te and orthorhombic GeSe2 microcrystals which are further supported by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Conseil, C., Bastien, J.-C., Boussard-Plédel, C., Zhang, X.-H., Lucas, P., Dai, Sh., Lucas, J., and Bureau, B., Te-based chalcohalide glasses for far-infrared optical fiber, Opt. Mater. Express, 2012, vol. 2, no. 11, pp. 1470–1477.

    Article  CAS  Google Scholar 

  2. Nie, Q., Wang, G., Wang, X., Dai, Sh., Deng, Sh., Xu, T., and Shen, X., Glass formation and properties of GeTe4–Ga2Te3–AgX (X= I/Br/Cl) far infrared transmitting chalcohalide glasses, Opt. Commun., 2010, vol. 283, no. 20, pp. 4004–4007.

    Article  CAS  Google Scholar 

  3. Cheng, C., Wang, X., Xu, T., Sun, L., Pan, Zh., Liu, Sh., and Zhu, Q., Optical properties of Ag- and AgI-doped Ge–Ga–Te far-infrared chalcogenide glasses, Infrared Phys. Technol., 2016, vol. 76, pp. 698–703.

    Article  CAS  Google Scholar 

  4. Huang, X., Jiao, Q., Lin, Ch., Xu, T., Ma, H., Zhang, X., and Dai, Sh., Compositional dependence of the optical properties of novel Ga–Sb–S–XI (XI = PbI2, CsI, AgI) infrared chalcogenide glasses, J. Am. Ceram. Soc., 2018, vol., 101, no. 2, pp. 749–755.

    Article  CAS  Google Scholar 

  5. Wang, X., Nie, Q., Wang, G., Sun, J., Song, B., Dai, Sh., and Zhang, X., Investigations of Ge–Te–AgI chalcogenide glass for far-infrared application, Spectrochim. Acta, Part A, 2012, vol. 86, pp. 586–589.

    Article  CAS  Google Scholar 

  6. Cui, S., le Coq, D., Boussard-Plédel, C., and Bureau, B., Electrical and optical investigations in Te–Ge–Ag and Te–Ge–AgI chalcogenide glasses, J. Alloys Compd., 2015, vol. 639, pp. 173–179.

    Article  CAS  Google Scholar 

  7. Ledemi, Y., El Amraoui, M., and Messaddeq, Y., Transmission enhancement in chalco-halide glasses for multiband applications, Opt. Mater. Express, 2014, vol. 4, no. 8, pp. 1725–1739.

    Article  CAS  Google Scholar 

  8. Bréhault, A., Calvez, L., Adam, Ph., Rollin, J., Cathelinaud, M., Bo Fan, Merdrignac-Conanec, O., Pain, Th., and Zhang, X.-H., Moldable multispectral glasses in GeS2–Ga2S3–CsCl system transparent from the visible up to the thermal infrared regions, J. Non-Cryst. Solids, 2016, vol. 431, pp. 25–30.

    Article  Google Scholar 

  9. Sharma, P. and Katyal, S.C., Far-infrared transmission and bonding arrangement in Ge10Se90 – xTex semiconducting glassy alloys, J. Non-Cryst. Solids, 2008, vol. 354, no. 32, pp. 3836–3839.

    Article  CAS  Google Scholar 

  10. Aly, K.A., Optical properties of Ge–Se–Te wedge-shaped films by using only transmission spectra, J. Non-Cryst. Solids, 2009, vol. 355, nos. 28–30, pp. 1489–1495.

    Article  CAS  Google Scholar 

  11. Sharma, V., Sharda, S., Sharma, N., Katyal, S.C., and Sharma, P., Chemical ordering and electronic properties of lone pair chalcogenide semiconductors, Prog. Solid State Chem., 2019, vol. 54, pp. 31–44.

    Article  CAS  Google Scholar 

  12. Sati, D.Ch., Katyal, S.Ch., and Sharma, P., Role of composition and substrate temperature on nonlinear optical properties of GeSeTe thin films in 0.4–2.4 μm wavelength range, IEEE Trans. Electron Dev., 2016, vol. 63, no. 2, pp. 698–703.

    Article  CAS  Google Scholar 

  13. El-Hawary, M.M., El-Mallawany, R., Abousehly, A.M., and Hegazy, H.H., Infrared transmission of chalcohalide glasses in the Ge–Se–Te–I system, Infrared Phys. Technol., 2012, vol. 55, no. 4, pp. 256–262.

    Article  CAS  Google Scholar 

  14. Galstyan, A., Messaddeq, S.H., Skripachev, I., Galstian, T., and Messaddeq, Y., Role of iodine in the solubility of Tm3+ ions in As2S3 glasses, Opt. Mater. Express, 2016, vol. 6, no. 1, pp. 230–243.

    Article  CAS  Google Scholar 

  15. Zhang, M., Yang, Zh., Zhao, H., Yang, A., Li, L., and Tao, H., Glass forming and properties of Ga2S3Sb2S3CsCl chalcohalide system, J. Alloys Compd., 2017, vol. 722, pp. 166–172.

    Article  CAS  Google Scholar 

  16. Cheng, J., Chen, W., and Ye, D., Novel chalcohalide glasses in the As–Ge–Ag–Se–Te–I system, J. Non-Cryst. Solids, 1995, vol. 184, pp. 124–127.

    Article  CAS  Google Scholar 

  17. Wang, G., Nie, Q., Barj, M., Wang, X., Dai, Sh., Shen, X., Xu, T., and Zhang, X., Compositional dependence of the optical properties of novel Ge–Ga–Te–CsI far infrared transmitting chalcohalide glasses system, J. Phys. Chem. Solids, 2011, vol. 72, no. 1, pp. 5–9.

    Article  CAS  Google Scholar 

  18. He, Y.-J., Nie, Q.-H., Sun, J., Wang, X.-S., Wang, G.-X., Dai, Sh.-X., Shen, X., and Xu, T.-F., Novel Ge–Te–I far-infrared-transmitting chalcogenide glasses system, Acta Photon. Sin., 2011, vol. 9.

    Google Scholar 

  19. Shpotyuk, O., Calvez, L., Ingram, A., Shpotyuk, Y., Kadan, V., Blonskyi, I., and Szatanik, R., Effect of Er3+-doping on 65GeS2–25Ga2S3–10CsCl glass probed by annihilating positrons, Opt. Mater., 2019, vol. 88, pp. 625–629.

    Article  CAS  Google Scholar 

  20. Wang, Z., Guo, H., Xiao, X., Xu, Y., Cui, X., Lu, M., Peng, B., Yang, A., Yang, Zh., and Gu, Sh., Synthesis and spectroscopy of high concentration dysprosium doped GeS2Ga2S3CdI2 chalcohalide glasses and fiber fabrication, J. Alloys Compd., 2017, vol. 692, pp. 1010–1017.

    Article  CAS  Google Scholar 

  21. Sharma, P., Sharma, N., Sharda, S., Katyal, S.C., and Sharma, V., Recent developments on the optical properties of thin films of chalcogenide glasses, Prog. Solid State Chem., 2016, vol. 44, no. 4, pp. 131–141.

    Article  CAS  Google Scholar 

  22. Kumar, S. and Singh, K., Glass transition and crystallization kinetics of Se98 – xCd2Inx (x = 0, 2, 6 and 10) glassy alloys, J. Therm. Anal. Calorim., 2016, vol. 124, no. 2, pp. 675–682.

    Article  CAS  Google Scholar 

  23. Shaaban, E.R., Elshaikh, H.A., and Soraya, M.M., Thermal stability criteria of Se80 – xTe20 Sbx in terms of characteristic temperatures and kinetic parameters, Acta Phys. Polon. A, 2015, vol. 28, no. 3, pp. 358–366.

    Article  Google Scholar 

  24. Reitter, A.M., Sreeram, A.N., Varshneya, A.K., and Swiler, D.R., Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses, J. Non-Cryst. Solids, 1992, vol. 139, pp. 121–128.

    Article  CAS  Google Scholar 

  25. Snopatin, G.E., Shiryaev, V.S., Plotnichenko, V.G., Dianov, E.M., and Churbanov, M.F., High-purity chalcogenide glasses for fiber optics, Inorg. Mater., 2009, vol. 45, no. 13, p. 1439.

    Article  CAS  Google Scholar 

  26. Lucas, J. and Zhang, X.H., The tellurium halide glasses, J. Non-Cryst. Solids, 1990, vol. 125, nos. 1–2, pp. 1–16.

    Article  CAS  Google Scholar 

  27. Katsuyama, T. and Matsumura, H., Light transmission characteristics of telluride-based chalcogenide glass for infrared fiber application, J. Appl. Phys., 1994, vol. 75, no. 6, pp. 2743–2748.

    Article  CAS  Google Scholar 

  28. Xu, J., Yang, R., Chen, Q., Jiang, W., and Ye, H., The effects of Te, I atoms on the properties and structure of Ge–As–Se system glasses, J. Non-Cryst. Solids, 1995, vol. 184, pp. 302–308.

    Article  CAS  Google Scholar 

  29. Moynihan, C.T., Macedo, P.B., Maklad, M.S., Mohr, R.K., and Howard, R.E., Intrinsic and impurity infrared absorption in As2Se3 glass, J. Non-Cryst. Solids, 1975, vol. 17, no. 3, pp. 369–385.

    Article  CAS  Google Scholar 

  30. Zhenhua, L. and Frischat, G.H., The formation and infrared optical properties of some chalcogenide and chalcohalide glasses, J. Non-Cryst. Solids, 1993, vol. 163, no. 2, pp. 169–176.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are thankful to Dr. Deep Shikha Sharma for language editing of the manuscript.

Funding

The authors (HHH & MAJ) extend their appreciation to the Deanship of Scientific Research at King Khalid University for the financial support through research groups program under grant number (R.G.P2/115/41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharma Pankaj.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegazy, H.H., Jaafari, M.A. & Pankaj, S. Effect of Annealing on Structure and Physicochemical Properties of (Ge20Se18Te62)100 – xIx, Where x = 0, 8. Glass Phys Chem 47, 245–252 (2021). https://doi.org/10.1134/S1087659621030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621030032

Keywords:

Navigation