Skip to main content

Advertisement

Log in

Sedimentary evolution of middle Jurassic epeiric carbonate ramp Hazara Basin Lesser Himalaya Pakistan

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Detailed microfacies analysis and sequence stratigraphic architecture of the Bajocian- mid-Callovian Samana Suk Formation exposed in the Hazara Basin, Lesser Himalaya of Pakistan, were examined. The formation reveals deposition on a carbonate ramp under variable low to high energy environments, such as carbonate mud-flats, lagoon, barrier/shoals, and open-marine setting. The stacking pattern of facies association depicts the change in depositional style in response to sea-level fluctuations. Vertical distribution of recognized facies allows dividing the Bajocian- mid-Callovian strata into one major sequence of second-order hierarchy with superimposed four cycles of third-order genetic sequences (DS1-DS4), bounded above and below by type-one unconformity. The succession comprised of the Bajocian- early Callovian Transgressive System Tract (TST) and early-mid Callovian Highstand System Tract (HST) differentiated by maximum flooding surface. It is reasonable to compare at least Bajocian- early Callovian retrogradational cycle (TST) with long-term global eustatic reconstruction suggesting eustatic change as a primary control on regional shoreline movement. Later, the sea level tends to drop toward the middle of Callovian, forming a prograding Highstand System Tract (HST). These HST deposits record a significant retreat of shoreline toward the termination of mid-Callovian, which ultimately led to regional uniformity above the Samana Suk Formation. This cycle indicates deflection from global sea-level signatures ascribes to regional tectonics in the region. For the first time, this study signifies the importance of regional tectonics overwhelming the global eustatic record of middle Jurassic carbonates in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afridi A (2010) Revalidation of geological map of Nathiagali quadrangle, Abbottabad and Mansehra district, Khyber Pakhtunkhwa and parts of Rawalpindi and Muzafarabad districts, Pakistan geological survey of Pakistan, Ministry of Petroleum and Natural Research. Lahore Geol Map Ser 3:98

    Google Scholar 

  • Aghaei A, Mahboubi A, Moussavi-Harami R, Heubeck C, Nadjafi M (2013) Facies analysis and sequence stratigraphy of an Upper Jurassic carbonate ramp in the Eastern Alborz range and Binalud Mountains. NE Iran Facies 59:863–889

    Article  Google Scholar 

  • Ahmed S, Mertmann D, Manutsoglu E (1997) Jurassic shelf sedimentation and sequence stratigraphy of the Surghar Range. Pak J Nepal Geol Soc 15:15–22

    Google Scholar 

  • Ahsan N, Chaudhry MN (2008) Geology of Hettangian to middle Eocene rocks of Hazara and Kashmir basins. N. W. Lesser Himal Pak Geol Bull Panj Univ 43:131–152

    Google Scholar 

  • Al-Husseini MI (1997) Jurassic sequence stratigraphy of the western and southern Arabian Gulf. GeoArabia 2:361–382

    Article  Google Scholar 

  • Alsharhan A, Kendall CSC (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Sci Rev 61:191–243

    Article  Google Scholar 

  • Arias C (2007) Pliensbachian-Toarcian ostracod biogeography in NW Europe: evidence for water mass structure evolution Palaeogeography. Palaeoclimatol Palaeoecol 251:398–421

    Article  Google Scholar 

  • Burchette T, Wright V (1992) Carbonate ramp depositional systems sedimentary. Geology 79:3–57

    Google Scholar 

  • Calkins JA, Matin AA (1973) The geology and mineral resources of the Garhi Habibullah quadrangle and the Kakul area, Hazara District, Pakistan. US Geological Survey, Project Report(IR) PK-38: 55

  • Calkins JA, Offield TW, Abdullah S, Ali S (1975) Geology of the southern Himalaya in Hazara, Pakistan, and adjacent areas. US Govt. Print. Off., United States, p 37

  • Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, Amsterdam, Netherlands, p 387

    Google Scholar 

  • Catuneanu O et al (2009) Towards the standardization of sequence stratigraphy. Earth Sci Rev 92:1–33

    Article  Google Scholar 

  • Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44:173–245

    Article  Google Scholar 

  • Chatterjee S, Goswami A, Scotese CR (2013) The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res 23(1):238–267

    Article  Google Scholar 

  • Cheema AH (2010) Microfacies, diagenesis and depositional environments of Samana Suk Formation (Middle Jurassic) carbonates exposed in South East Hazara and Samana Range. Dissertation University of the Punjab, p 259

  • Cheema A, Hersi OS (2016) Lithofacies attributes and depositional setting of the middle Jurassic Samana Suk Formation, Potewar Basin, North Pakistan. Paper presented at the CSPG convetion, Calgary Canada, pp 1–4

  • Chen J, Han Z, Zhang X, Fan A, Yang R (2010) Early diagenetic deformation structures of the Furongian ribbon rocks in Shandong Province of China—A new perspective of the genesis of limestone conglomerates. Sci Ch Earth Sci 53:241–252

    Article  Google Scholar 

  • Damborenea SE (2002) Jurassic evolution of southern hemisphere marine palaeobiogeographic units based on benthonic bivalves. Geobios 35:51–71

    Article  Google Scholar 

  • Davies SJ, Gibling M (2003) Architecture of coastal and alluvial deposits in an extensional basin: the Carboniferous Joggins Formation of eastern Canada. Sedimentology 50:415–439

    Article  Google Scholar 

  • DiPietro JA, Pogue KR (2004) Tectonostratigraphic subdivisions of the Himalaya: A view from the west. Tectonics 23:1–20

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional textures. AAPG Mem 1:108–121

    Google Scholar 

  • El-Azabi M, El-Araby A (2007) Depositional framework and sequence stratigraphic aspects of the Coniacian-Santonian mixed siliciclastic/carbonate Matulla sediments in Nezzazat and Ekma blocks. Gulf Suez Egypt J Afri Earth Sci 47:179–202

    Google Scholar 

  • Embry A (2009) Practical sequence stratigraphy. Can Soc Petroleum Geol 81:79

    Google Scholar 

  • Embry AF, Klovan JE (1971) A late Devonian reef tract on northeastern Banks Island. NWT Bull Can Petroleum Geol 19:730–781

    Google Scholar 

  • Enay R, Cariou E, Bellion Y, Guiraud R, Mangold C, Thierry J (1993) Callovian palaeoenvironments (162-158 Ma) Map 1: 20,000,000. In: Dercourt J, Ricou LE, Vrielynck B (eds) Atlas tethys palaeoenvironmental maps, Beicip-Franlab, Rueil-Malmaison

    Google Scholar 

  • Fatmi A (1977) Mesozoic stratigraphy of Pakistan. GSP Mem 12:29–56

    Google Scholar 

  • Flügel E (2004) Microfacies analysis of carbonate rocks - analysis, interpretation and application. Springer, Berlin, p 242p

    Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks. Springer, Berlin

    Book  Google Scholar 

  • Gaetani M, Garzanti E (1991) Multicyclic history of the northern India continental margin (northwestern Himalaya). AAPG Bull 75(9):1427–1446

    Google Scholar 

  • Gaina C, Torsvik TH, van Hinsbergen DJ, Medvedev S, Werner SC, Labails C (2013) The African Plate: a history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics 604:4–25

    Article  Google Scholar 

  • Gaina C, Van Hinsbergen DJ, Spakman W (2015) Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography. Tectonics 34(5):875–906

    Article  Google Scholar 

  • Ghaznavi M, Karim T, Maynard J (1983) A bauxitic paleosol in phosphate-bearing strata of northern Pakistan. Econ Geol 78:344–347

    Article  Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol, Palaeoecol 167:23–37

    Article  Google Scholar 

  • Haq BU (2018) Jurassic sea-level variations: a reappraisal. GSA Today 28:4–10

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Harris PM (1979) Facies anatomy and diagenesis of a Bahamian ooid shoal: Sedimenta VII University of Miami Comparative Sedimentology Laboratory, p 176

  • Harris PM (1984) Carbonate sands, a core workshop. SEPM core workshop, Oklahoma, United States, vol 5, p 464

  • Hips K, Haas J (2009) Facies and diagenetic evaluation of the Permian-Triassic boundary interval and basal Triassic carbonates: shallow and deep ramp sections. Hungary Facies 55:421–442

    Article  Google Scholar 

  • Jacquin T, Dardeau G, Durlet C, de Graciansky PC, Hantzpergue P (1998) The North Sea cycle: an overview of 2nd-order transgressive/regressive facies cycles in western Europe. SEPM Spec Publ 60:445–466

  • James NP, Bone Y, Collins LB, Kyser TK (2001) Surficial sediments of the Great Australian Bight: facies dynamics and oceanography on a vast cool-water carbonate shelf. J Sediment Res 71:549–567

    Article  Google Scholar 

  • Jank M, Wetzel A, Meyer CA (2006) Late Jurassic sea-level fluctuations in NW Switzerland (Late Oxfordian to Late Kimmeridgian): closing the gap between the Boreal and Tethyan realm in Western Europe. Facies 52:487–519

    Article  Google Scholar 

  • Kazmi AH, Abbasi IA (2008) Stratigraphy & historical geology of Pakistan. Department & National Centre of Excellence in Geology, Peshawar, Pakistan, p 524

  • Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L (2009) Did the Kohistan-Ladakh island arc collide first with India? Geol Soc Am Bull 121:366–384

    Article  Google Scholar 

  • Khan E, Saleem M, Naseem AA, Ahmad W, Yaseen M, Khan TU (2020) Microfacies analysis, diagenetic overprints, geochemistry, and reservoir quality of the Jurassic Samanasuk Formation at the Kahi Section. Nizampur Basin, NW Himal Pak Carbonates Evaporites 35:1–17

    Google Scholar 

  • Lasemi Y, Jahani D, Amin-Rasouli H, Lasemi Z (2012) Ancient carbonate tidalites. Principles of tidal sedimentology. Springer, Dordrecht, pp 567–607

    Chapter  Google Scholar 

  • Latif M (1970) Explanatory notes on the geology of southeastern Hazara to accompany the revised geological map Jahrbuch der Geologischen Bundesanstalt. Sonderband 15:5–20

    Google Scholar 

  • Legarreta L, Uliana MA (1996) The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeogeogr Palaeoclimatol Palaeoecol 120:303–330

    Article  Google Scholar 

  • MacEachern J, Bann K, Gingras M, Pemberton G (2007) Applied Ichnology vol 52. SEPM Soc Sedimentary Geol. https://doi.org/10.2110/pec.07.52

    Article  Google Scholar 

  • Marian VA, Bucur II (2012) Microfacies of Urgonian limestones from the Perşani mountains (Eastern Carpathians, Romania). Acta Paleontol Rom 8:3–32

    Google Scholar 

  • Martini R, Cirilli S, Saurer C, Abate B, Ferruzza G, Cicero GL (2007) Depositional environment and biofacies characterisation of the Triassic (Carnian to Rhaetian) carbonate succession of Punta Bassano (Marettimo Island, Sicily). Facies 53:389–400

    Article  Google Scholar 

  • Miall AD (2013) Principles of sedimentary basin analysis. Springer Science & Business Media, Cham, p 340

    Google Scholar 

  • Nalin R, Nelson CS, Basso D, Massari F (2008) Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from North Island. N. Z. Sedimentol 55:249–274

    Article  Google Scholar 

  • Norton I, Sclater J (1979) A model for the evolution of the Indian Ocean and the breakup of Gondwanaland Journal of Geophysical Research: solid. Earth 84:6803–6830

    Google Scholar 

  • Palma RM, López-Gómez J, Piethé RD (2007) Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza province) Neuquén Basin, Argentina: facies and depositional sequences. Sediment Geol 195:113–134

    Article  Google Scholar 

  • Rees PM, Gibbs MT, Ziegler AM, Kutzbach JE, Behling PJ (1999) Permian climates: evaluating model predictions using global paleobotanical data. Geology 27:891–894

    Article  Google Scholar 

  • Rees PM, Ziegler AM, Gibbs MT, Kutzbach JE, Behling PJ, Rowley DB (2002) Permian phytogeographic patterns and climate data/model comparisons. J Geol 110:1–31

    Article  Google Scholar 

  • Ruban DA (2015) Mesozoic long-term eustatic cycles and their uncertain hierarchy. Geosci Front 6:503–511

    Article  Google Scholar 

  • Ruban DA (2016) A “chaos” of Phanerozoic eustatic curves. J Afr Earth Sci 116:225–232

    Article  Google Scholar 

  • Ruban DA, Sallam ES (2016) Bajocian-Bathonian (Middle Jurassic) sea-level changes in northeastern Egypt: synthesis and further implications. J Afr Earth Sci 120:181–185

    Article  Google Scholar 

  • Saboor A, Haneef M, Hanif M, Swati MAF (2020a) Sedimentological attributes of the Middle Jurassic peloids-dominated carbonates of eastern Tethys, lesser Himalayas. Pak Carbonates Evaporites 35:1–17

    Google Scholar 

  • Saboor A, Khan N, Hanif M, Jan IU, Ahmad S, Ahmad W (2020b) Paleo-depositional and sequence stratigraphic setting of the middle Jurassic Samana Suk Formation at Tarnawai Section, lesser Himalayas and its regional comparison. Himal Geol 41:121–132

    Google Scholar 

  • Sardarabadi S, Jahani D, Ghadimvand NK (2016) Facies, depositional environment and diagenesis of the Qom formation in Rameh section (Northeastern Garmsar). Open J Geol 6:1240–1256

    Article  Google Scholar 

  • Schauer M, Aigner T (1997) Cycle stacking pattern, diagenesis and reservoir geology of peritidal dolostones, trigonodus-dolomite, Upper Muschelkalk (Middle Triassic, SW-Germany). Facies 37:99–113

    Article  Google Scholar 

  • Schlaich M, Aigner T (2017) Facies and integrated sequence stratigraphy of an epeiric carbonate ramp succession: Dhruma Formation Sultanate of Oman. Depos Rec 3:92–132

    Article  Google Scholar 

  • Scholle P (1978) A Color Illustrated Guide to Carbonate Rock Consituents, Textures Cements and Porosities. American Association of Petroleum Geologists, Tulsa

    Book  Google Scholar 

  • Scotese CR (1991) Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 87:493–501

    Article  Google Scholar 

  • Scotese C (2014) Atlas of Jurassic paleogeographic maps, PALEOMAP Atlas for ArcGIS, volume 3, The Jurassic and Triassic, Maps 32-42, Mollweide Projection, PALEO MAP Project, Evanston, IL

  • Searle MP (2019) Timing of subduction initiation, arc formation, ophiolite obduction and India-Asia collision in the Himalaya Geological Society. London, Special Publications 483:19–37

    Article  Google Scholar 

  • Shah SMI (2009) Stratigraphy of Pakistan. Geol Surv Pak Mem 22:381

    Google Scholar 

  • Shah MT, Moon CJ (2004) Mineralogy, geochemistry and genesis of the ferromanganese ores from Hazara area. NW Himal North Pak J Asian Earth Sci 23:1–15

    Article  Google Scholar 

  • Simmons M, Gradstein F, Ogg J (2012) Sequence stratigraphy and sea-level change. Geol Time Scale 1:239–267

    Article  Google Scholar 

  • Singh B et al (2016) Tectonically driven late Paleocene (57.9–54.7 Ma) transgression and climatically forced latest middle Eocene (41.3–38.0 Ma) regression on the Indian subcontinent. J Asian Earth Sci 115:124–132

    Article  Google Scholar 

  • Smewing JD, Warburton J, Daley T, Copestake P, Ul-Haq N (2002) Sequence stratigraphy of the southern Kirthar fold belt and middle Indus basin. Pak Geol Soc London Spec Publ 195:273–299

    Article  Google Scholar 

  • Surlyk F (1991) Sequence stratigraphy of the Jurassic-lowermost cretaceous of East Greenland. AAPG Bull 75:1468–1488

    Google Scholar 

  • Treloar PJ, Palin RM, Searle MP (2019) Towards resolving the metamorphic enigma of the Indian Plate in the NW Himalaya of Pakistan . Geol Soc London Spec Publ 483:255–279

    Article  Google Scholar 

  • Umar M, Sabir MA, Farooq M, Khan MMSS, Faridullah F, Jadoon UK, Khan AS (2015) Stratigraphic and sedimentological attributes in Hazara Basin Lesser Himalaya, North Pakistan: their role in deciphering minerals potential. Arab J Geosci 8:1653–1667

    Article  Google Scholar 

  • Umar M, Khan AA, Qasim M, Sabir M, Jadoon IAK, Farooq M, Jamil M (2020) Sedimentology of Galdanian formation Hazara basin lesser Himalaya Pakistan: the signatures of Cambrian-Ordovician Pan-African Orogeny. Himal Geol 41:93–104

    Google Scholar 

  • Vail PR (1977) Seismic stratigraphy and global changes of sea level. AAPG Bull 26:49–212

    Google Scholar 

  • Wadood B, Khan S, Li H, Liu Y, Ahmad S, Jiao X (2020) Sequence stratigraphic framework of the Jurassic samana suk carbonate formation, North Pakistan: implications for reservoir potential. Arab J Sci Eng 46:525–542. https://doi.org/10.1007/s13369-020-04654-9

    Article  Google Scholar 

  • Wilson J (1975) Carbonate facies in geologic history Springer-Verlag. Berlin Heidelberg, New York, p 168p

    Book  Google Scholar 

  • Xiaochi L, Grant-Mackie J (1993) Jurassic sedimentary cycles and eustatic sea-level changes in southern Tibet. Palaeogeogr Palaeoclimatol Palaeoecol 101:27–48

    Article  Google Scholar 

  • Yin J (2007) A review on jurassic sea-level changes in Himalayan Tibet. Beringeria 37:253–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.M.S.S., Jadoon, Q.A., Umar, M. et al. Sedimentary evolution of middle Jurassic epeiric carbonate ramp Hazara Basin Lesser Himalaya Pakistan. Carbonates Evaporites 36, 48 (2021). https://doi.org/10.1007/s13146-021-00713-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00713-w

Keywords

Navigation