Skip to main content

Advertisement

Log in

Morphology and distribution of monogenetic volcanoes in Los Tuxtlas Volcanic Field, Veracruz, Mexico: implications for hazard assessment

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We find that volcanic hazards vary across the historically active Los Tuxtlas volcanic field (LTVF), with large scoria cones, and likely larger magnitude and intensity eruptions, concentrated in a NW–SE trending band and maars distributed at lower elevations. As eruptive processes vary in systematic ways across the LTVF that reflect the structure and topography of this volcanic field, spatial variations in eruption characteristics we identify are a valuable guide to future volcanic hazard assessments. The LTVF is located in a tropical climate near the coast of the Gulf of Mexico, isolated from the Trans-Mexican Volcanic Belt. We have identified 350 recent monogenetic edifices, mainly scoria cones and maars, in this approximately 100 × 50 km and mostly poorly accessible volcanic field. We compare morphologic traits among scoria cones and maars in the central and distal areas of the volcanic field using statistical analyses of volcano morphometric parameters obtained from Lidar images. Predictions, using the Kriging function, indicate areas most prone to future eruptions and likely morphologic characteristics of future volcanoes, which correlate with eruptive processes. Larger-sized scoria cones are preferentially located close to fault systems that define the center line of the NW–SE elongate volcanic field and likely are produced by eruptions with violent Strombolian phases. Some of these cones emplaced close to the NW-trending fault systems are associated with low-viscosity lava flows that reach > 10 km off the axis of the volcanic field. These are inferred to have particularly high effusion rates. Phreatomagmatic eruptions occur preferentially in the SW section of the volcanic field, a region which currently hosts a shallow ground water table near the contact with the Tertiary Veracruz basin sediment fill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alfano F, Ort MH, Pioli L, Self S, Hanson SL, Roggensack K, Allison CM, Amos R, Clarke AB (2019) Subplinian monogenetic basaltic eruption of Sunset Crater, Arizona, USA. Geol Soc Am Bull 131(3–4):661–674

    Article  Google Scholar 

  • Andreani L, Rangin C, Martínez-Reyes J, Le Roy C, Aranda-García M, Le Pichón X, Peterson-Rodríguez R (2008) The Neogene Veracruz fault: evidences for left-lateral slip along the southern Mexico block. Bull Soc Geol France 179(2):195–208

    Article  Google Scholar 

  • Baptista AR, Mangold N, Ansan V, Baratoux D, Lognonné P, Alves EI, Williams DA, Bleacher JE, Masson P, Neukum G (2008) A swarm of small shield volcanoes on Syria Planum. Mars J Geophys Res Planets 113(E9):E09010

    Google Scholar 

  • Belousov A, Belousova M, Edwards B, Volynets A, Melnikov D (2015) Overview of the precursors and dynamics of the 2012–13 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia. J Volcanol Geotherm Res 307:22–37

    Article  Google Scholar 

  • Besch T, Negendank JFW, Emmermann R, Tobschall HJ (1988) Geochemical constraints on the origin of calcalkaline and alkaline magmas of the eastern Trans-Mexican Volcanic Belt. Geof Int 7:641–663

    Article  Google Scholar 

  • Brand BD, Gravley DM, Clarke AB, Lindsay JM, Bloomberg SH, Agustin-Flores J, Nemeth K (2014) A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 276:215–232

    Article  Google Scholar 

  • Cantagrel J, Robin C (1979) K-Ar dating on Eastern Mexican volcanic rocks – relations between the andesitic and the alkaline provinces. J Volcanol Geotherm Res 5:99–114

    Google Scholar 

  • Carrasco-Núñez G, Siebert L, Díaz-Castellón R, Vázquez-Selem L, Capra L (2010) Evolution and hazards of a long-quiescent compound shield-like volcano: Cofre de Perote, Eastern Trans-Mexican Volcanic Belt. J Volcanol Geotherm Res 197:209–224

    Google Scholar 

  • CONAGUA (2015) Actualización de la disponibilidad media anual de agua en el acuífero Sierra de San Andrés Tuxtla (3016), Estado de Veracruz. Publicada en el Diario Oficial de la Federación 20 de abril de 2015, p 22. https://sigagis.conagua.gob.mx/dam20/. Accessed 5 Feb 2021

  • Connor CB (1987) Structure of the Michoacán-Guanajuato volcanic field. Mexico J Volcanol Geotherm Res 33(1–3):191–200. https://doi.org/10.1016/0377-0273(87)90061-8

    Article  Google Scholar 

  • Connor CB, Connor LJ, Germa A, Richardson JA, Bebbington MS, Gallant E, Saballos A (2019) How to use kernel density estimation as a diagnostic and forecasting tool for distributed volcanic vents. Statistics in Volcanology 4(3):1–25. https://doi.org/10.5038/2163-338X.4.3

    Article  Google Scholar 

  • Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field Arizona. Geology 26(7):655–658

    Article  Google Scholar 

  • Cruz-Atienza VM (2000) Inversión global con algoritmos genéticos y cristalización simulada aplicada a funciones de receptor: modelos estructurales de velocidades para la corteza en la República Mexicana. Bachelor Thesis, Facultad de Ingeniería, Universidad Nacional Autónoma de México

  • Delvaux D (2012) Release of program Win-Tensor 4.0 for tectonic stress inversion: statistical expression of stress parameters. Geophys Res Abstracts: 14, EGU2012–5899, EGU General Assembly

  • Delvaux D, Sperner B (2003) New aspects of tectonic stress inversión with reference to the TENSOR program. In: Nieuwland, DA (ed) New insights into structural interpretation and modelling. Geol Soc Lon, Spec Pub 212:75–100

  • Dohrenwend JC, Wells SG, Turrin BD (1986) Degradation of Quaternary cinder cones in the Cima volcanic field, Mojave Desert, California. Geol Soc Am Bull 97:421–427

    Article  Google Scholar 

  • Doubik P, Hill BE (1999) Magmatic and hydromagmatic conduit development during the 1975 Tolbachik eruption, Kamchatka, with implications for hazards assessment at Yucca Mountain, NV. J Volc Geotherm Res 91:43–64

    Article  Google Scholar 

  • Duong T (2020) ks: Kernel Smoothing. https://CRAN.R-project.org/package=ks. Accessed May 2020

  • Espíndola JM, Zamora-Camacho A, Godinez ML, Schaaf P, Rodríguez SR (2010) The 1793 eruption of San Martin Tuxtla volcano, Veracruz Mexico. J Volcanol Geotherm Res 197(1–4):188–208

    Article  Google Scholar 

  • Espíndola JM, Godinez ML, Zamora-Camacho A (2012) Volcanic hazards from San Martín Tuxtla volcano, Tuxtla Volcanic Field, Veracruz, Mexico: probability maps of ash fall deposition from possible future eruption. Nat Haz 61:771–784

    Article  Google Scholar 

  • Ferrari L (2004) Slab detachment control on volcanic pulse and mantle heterogeneity in Central Mexico. Geology 32:77–80

    Article  Google Scholar 

  • Ferrari L, Tagami T, Eguchi M, Orozco-Esquivel MT, Petrone CM, Jacobo-Albarrán J, López-Martínez M (2005) Geology, geochronology and tectonic setting of late Cenozoic volcanism along the southwestern Gulf of Mexico: the Eastern Alkaline Province revisited. J Volcanol Geotherm Res 146:284–306. https://doi.org/10.1016/j.jvolgeores.2005.02.004

    Article  Google Scholar 

  • Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523(2):122–149

    Article  Google Scholar 

  • Franco SI, Canet C, Iglesias A, Valdés-González C (2013) Seismic activity in theGulf of Mexico. A preliminary analysis. Boletín De La Sociedad Geológica Mexicana 65:447–455

    Article  Google Scholar 

  • Friedlaender I, Sonder RA (1923) Über das Vulkangebiet von San Martín Tuxtla in Mexiko. Zeitschrift Für Vulkanologie 7:162–187

    Google Scholar 

  • Gabriel KR (1971) The biplot graphic display of matrices with applications to principal component analysis. Biometrika 58:453–467

    Article  Google Scholar 

  • Global Volcanism Program (2013) [San Martín (341110)] In Volcanoes of the World 4.9.2 (10 Dec 2020). Venzke, E (ed.). Smithsonian Institution. Downloaded 21 Jan 2021 ([https://volcano.si.edu/volcano.cfm?vn=341110])

  • Gómez-Tuena A, LaGatta AB, Langmuir CH, Goldstein SL, Ortega-Gutiérrez F, Carrasco-Núñez G (2003) Temporal control of subduction magmatism in the Eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions, and crustal contamination. Geochem Geophys Geosyst 4(8). https://doi.org/10.1029/2003GC000524

  • Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L (2007) Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: Alaniz-Álvarez SA, Nieto-Samaniego, AF (Eds), Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico. GeolSoc Am Spec Paper 422:129–181. https://doi.org/10.1130/2007.2422

  • Gower JC, Hand DJ (1996) Biplots. Chapman and Hall, London, p 277

    Google Scholar 

  • Gräler B, Pebesma E, Heuvelink G (2016) Spatio-Temporal Interpolation using gstat. The R Journal 8(1):204–218

    Article  Google Scholar 

  • Graettinger AH (2018) Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2018.04.002

    Article  Google Scholar 

  • Gutiérrez-García G, Ricker M (2011) Climate and climate change in the region of Los Tuxtlas (Veracruz, Mexico): a statistical analysis. Atmósfera 24(4):347–373

    Google Scholar 

  • Head JW III, Wilson L (1989) Basaltic pyroclastic eruptions: influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geoth Res 37(3–4):261–271

    Article  Google Scholar 

  • Inbar M, Gilichinsky M, Melekestsev I, Melnikov D, Zaretskaya N (2011) Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field Kamchatka. J Volcanol Geotherm Res 201(1–4):301–311

    Article  Google Scholar 

  • Jacobo-Albarrán J (1997) Studio geologico e petrologico del complesso vulcanico di Los Tuxtlas, Stato di Veracruz, Messico. Ph.D. Thesis, Universita degli Studi di Pisa Italy 147 p

  • Jaquet O, Carniel R (2006) Estimation of volcanic hazards using geostatistical models. Statistics in Volcanology 89–104. https://doi.org/10.1144/IAVCEI001

  • Jaquet O, Lantuéjoul C, Goto J (2012) Probabilistic estimation of long-term volcanic hazard with assimilation of geophysics and tectonic data. J Volcanol Geotherm Res 235:29–36

    Article  Google Scholar 

  • Jaquet O, Connor C, Connor L (2008) Probabilistic methodology for long-term assessment of volcanic hazards. Nucl Technol 163(1):180–189

    Article  Google Scholar 

  • Jennette D, Wawrzyniec T, Fouad K, Dunlap D, Meneses-Rocha J, Gmaldo F, Muñoz R, Barrera D, Williams-Rojas C, Escamilla-Herrera A (2003) Traps and turbidite reservoir characteristics from a complex and evolving tectonic setting, Veracruz basin, southeastern Mexico. AAPG Bull 87:1599–1622

    Article  Google Scholar 

  • Kereszturi G, Geyer A, Martí J, Németh K, Dóniz-Páez FJ (2013) Evaluation of morphometry-based dating of monogenetic volcanoes—a case study from BandasdelSur, Tenerife (Canary Islands). Bull Volcanol 75(7):1–19. https://doi.org/10.1007/s00445-013-0734-1

    Article  Google Scholar 

  • Kereszturi G, Nemeth K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. InTech Open. https://doi.org/10.5772/51387

    Article  Google Scholar 

  • Kilburn CR (1981) Pahoehoe and aa lavas: a discussion and continuation of the model of Peterson and Tilling. J Volcanol Geoth Res 11(2–4):373–382

    Article  Google Scholar 

  • Kugaenko Y, Volynets AO (2019) Magmatic plumbing systems of the monogenetic volcanic fields: a case study of Tolbachinsky Dol, Kamchatka. J Volcanol Geoth Res 383:63–76

    Article  Google Scholar 

  • López-Infanzón M, Nelson SA (1990) Geology and K-Ar dating of the Sierra de Chiconquiaco-Palma Sola volcanics, Central Veracruz Mexico. Geolsoc Am Abs Progs 22:67

    Google Scholar 

  • Lundgren P, Kiryukhin A, Milillo P, Samsonov S (2015) Dike model for the 2012–2013 Tolbachik eruption constrained by satellite radar interferometry observations. J Volcanol Geotherm Res 307:79–88

    Article  Google Scholar 

  • MacDonald GA (1972) Volcanoes. Prentice-Hall inc., Englewood Cliffs, p 510

    Google Scholar 

  • Maeno F, Nakada S, Oikawa T, Yoshimoto M, Komori J, Ishizuka Y, Takeshita Y, Shimano T, KanekoT NM (2016) Reconstruction of a phreatic eruption on 27 September 2014 at Ontakevolcano, central Japan, based on proximal pyroclastic density current and fallout deposits. Earth Planets and Space 68(1):82

    Article  Google Scholar 

  • Mahony SH, Wallace LM, Miyoshi M, Villamor P, Sparks RSJ, Hasenaka T (2011) Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region SW Japan. Geol Soc Am Bull 123(11–12):2201–2223

    Article  Google Scholar 

  • Martínez B. y Milan, M (1992) Análisis morfométrico de conos cineríticos en el Campo Volcánico Los Tuxtlas, Veracruz, México. En: Verma, S.P., Guevara, M., Izquierdo M., G., Santoyo, E., Navarro-L., I., Rodríguez de B., C.O., Barbarín C., J.M. y Ramírez, F. (Eds.), Actas Fac. Ciencias Tierra UANL Linares, v.7, p. 237–242

  • Meneses de Gyves J. (1953) Condiciones estratigráficas de los sedimentos Terciarios en la cuenca de Veracruz. Boletin de la Asociación Mexicana de Geólogos Petroleros 3:105–112

  • Moziño JM (1870) Informe sobre la erupción del Volcán de San Martín Tuxtla (Veracruz)ocurrida el año de 1793. Boletín Soc Mex Geograf Estad II:62–72

    Google Scholar 

  • Mülleried FKG (1933) El Chichón, único volcán en actividad descubierto en el estado de Chiapas. Memorias De La Sociedad Científica Antonio Álzate 54:411–416

    Google Scholar 

  • Nelson SA, González-Caver E (1992) Geology and K-Ar dating of the Tuxtla Volcanic Field, Veracruz, Mexico. Bull Volcanol 55:85–96

    Article  Google Scholar 

  • Nelson SA, González-Caver E, Kyser TK (1995) Constraints on the origin of alkaline and calc-alkaline magmas from the Tuxtla Volcanic Field, Veracruz, Mexico. Contrib Mineral Petrol 122:191–211

    Article  Google Scholar 

  • Nemeth K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci (Geol Rundsch) 104:2131–2146. https://doi.org/10.1007/s00531-015-1243-6

    Article  Google Scholar 

  • Németh K, Risso C, Nullo F, Kereszturi G (2011) The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza Argentina. Cent Eur J Geosci 3(2):102–118

  • Nemeth K, Carrasco-Núñez G, Aranda-Gómez JJ, Smith IEM (eds) (2017) Monogenetic volcanism. Geol Soc London, Spec Pub 446

  • Pardo-Iguzquiza E, Chica-Olmo M (2008) Geostatistics with the Matern semivariogram model: a library of computer programs for inference, kriging and simulation. Computers & Geosciences 34(9):1073–1079

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • Pebesma EJ, Wesseling CG (1998) Gstat, a program for geostatistical modelling, prediction and simulation. Comput Geosci 24(1):17–31

    Article  Google Scholar 

  • Pichler H, Weyl R (1976) Quaternary alkaline volcanic rocks in eastern Mexico and Central America. Munster ForschGeol Paläon 38(39):159–178

    Google Scholar 

  • Pindell J, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geol Soc Lon Spec Pub 328(1):1–55. https://doi.org/10.1144/SP328.1

    Article  Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Plant Sci Lett 271(1–4):359–368. https://doi.org/10.1016/j.epsl.2008.04.026

    Article  Google Scholar 

  • Porter SC (1972) Distribution, morphology, and size frequency of cinder cones on Mauna Kea Volcano Hawaii. Bull GeolSocAmer 83:3607–3612

    Google Scholar 

  • Prost G, Aranda M (2001) Tectonics and hydrocarbon systems of the Veracruz Basin, Mexico, In Bartolini, C., Buffler, R.T., Cantú-Chapa, A. (eds), (2001). The western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems. AAPG Memoir 75, 480p

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed June 2020

  • Reinhardt BK (1991) Volcanology of the younger volcanic sequence and volcanic hazards study of the Tuxtla Volcanic Field, Veracruz, Mexico. Thesis, Tulane University, M.Sc, p 147

    Google Scholar 

  • Richardson JA, Bleacher JE, Connor CB, Glaze LS (2021) Small volcanic vents in the Tharsis volcanic province. Mars. J Geophys Res: Planets 126:e2020JE006620. https://doi.org/10.1029/2020JE006620

  • Riedel C, Ernst GGJ, Riley M (2003) Controls on the growth and geometry of pyroclastic constructs. J Volcanol Geotherm Res 127(1):121–152. https://doi.org/10.1016/S0377-0273(03)00196-3

    Article  Google Scholar 

  • Ríos-Mac-Beth F (1952) Estudio geológico de la región de Los Tuxtlas Veracruz. Bol Asoc Mex Geol Petrol 4(9–10):325–376

    Google Scholar 

  • Robin C (1976) Présence simultanée de magmatism es de Significations tectoniques opposées dansl’Est du Mexique. Bull Soc Geol Fr 18:1637–1645

    Article  Google Scholar 

  • Robin C (1982) Relations volcanogic-magmatologic-geodynamique: applications au passage entre volcanismes alcalin et andesitique dans le sud Mexicain (AxeTrans-mexicain et Province Alcaline Oriental) PhD Thesis, Annales Scientifiques de l’Université de Clermont-Ferrand II France, 503p

  • Robin C, Tournon J (1978) Spatial relations of andesitic and alkaline provinces in Mexico and Central America. Can J Earth Sci 15:1633–1641

    Article  Google Scholar 

  • Salvage RO, Avard G, De Moor JM, Pacheco JF, Brenes Marin J, Cascante M, Muller C, Martinez Cruz M (2018) Renewed explosive phreatomagmatic activity at Poás volcano, Costa Rica in April 2017. Front Earth Sci 6:160

    Article  Google Scholar 

  • Santley RS (2007) The prehistory of the Tuxtlas. University of New Mexico Press.261p

  • Shurbet DH, Cebull SE (1984) Tectonic interpretation of the Trans-Mexican volcanic belt. Tectonophysics 101:159–165

    Article  Google Scholar 

  • Sieron K, Capra L, Rodríguez-Elizarrarás S (2014) Hazard assessment at San Martin volcano based on geological record, numerical modeling, and spatial analysis. Nat Haz 70:275–297

    Article  Google Scholar 

  • Sieron K, Álvarez D (2013) Spatial analysis of the Los Tuxtlas Volcanic Field (LTVF) and hazard implications. AGU 2013 fall meeting, abstract id. V41A-07

  • Singh SK, Pacheco JF, Pérez-Campos X, Ordaz M, Reinoso EM (2015) The 6 September 1997 (Mw4.5) Coatzacoalcos-Minatitlán, Veracruz, Mexico earthquake: implications for tectonics and seismic hazard of the region. Geofísica Internacional 54:289–298. https://doi.org/10.1016/j.gi.2015.08.001

    Article  Google Scholar 

  • Stern B, Dickinson WR (2010) The Gulf of Mexico is a Jurassic backar basin. Geosphere 6(6):739–754. https://doi.org/10.1130/GES00585.1

    Article  Google Scholar 

  • Suárez G (2000) Reverse faulting in the Isthmus of Tehuantepec: backarc deformation induced by the subduction of the Tehuantepec ridge. In: Delgado-Granados H, Aguirre-Diaz G, Stock JM (eds) Cenozoic Tectonics and Volcanism of Mexico, Boulder. Geol Soc Am Spec Pap 334:263–268

  • Sumner JM, Blake S, Matela RJ, Wolff JA (2005) Spatter. J Volcanol Geoth Res 142(1–2):49–65

    Article  Google Scholar 

  • Suter M (1991) State of stress and active deformation in Mexico and western Central America. In: Slemmons DB, Engdahl ER, Zoback MD, Blackwell DD (eds) Neotectonics of North America, Boulder. Geol Soc Am Decade MapV1:401–421

  • Suter M, López-Martínez M, Quintero-Legorreta O, Carrillo-Martínez M (2001) Quaternary intra-arc extension in the central Trans-Mexican Volcanic Belt. GSA Bull 113:693–703

    Article  Google Scholar 

  • Tatsumi Y, Furukawa Y, Kogiso T, Yamanaka Y, Yokoyama T, Fedotov SA (1994) A third volcanic chain in Kamchatka: thermal anomaly at transform/convergence plate boundary. Geophys Res Lett 21(7):537–540

    Article  Google Scholar 

  • Thorpe RS (1977) Tectonic significance of alkaline volcanism in eastern Mexico. Tectonophysics 40:T19–T26

    Article  Google Scholar 

  • Tsang SW, Lindsay JM, Coco G, Deligne NI (2020) The influence of surficial features in lava flow modelling. J App Volcanol 9(1):1–12

    Google Scholar 

  • Urrutia-Fucugauchi J, Boehnel H (1988) Tectonics along the Trans-Mexican Volcanic Belt according to paleomagnetic data. Phys Earth Planet Inter 52(3–4):320–329. https://doi.org/10.1016/0031-9201(88)90124-0

    Article  Google Scholar 

  • Valentine GA, White JD, Ross PS, Graettinger AH, Sonder I (2017) Updates to concepts on phreatomagmatic maar-diatremes and their pyroclastic deposits. Frontiers Earth Sci 5:68

    Article  Google Scholar 

  • Van Burkalow A (1945) Angle of repose and angle of sliding friction: an experimental study. GSA Bull 56(6):669–707. https://doi.org/10.1130/0016-7606(1945)56[669:AORAAO]2.0.CO;2

    Article  Google Scholar 

  • Whelley PL, Newhall CG, Bradley KE (2015) The frequency of explosive volcanic eruptions in Southeast Asia. Bull Volcanol 77(1):1

    Article  Google Scholar 

  • White JT, Connor CB, Connor L, Hasenaka T (2017) Efficient inversion and uncertainty quantification of a tephra fallout model. JGR Solid Earth 122(1):281–291. https://doi.org/10.1002/2016JB013682

    Article  Google Scholar 

  • Wood CA (1980) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160

    Article  Google Scholar 

  • Zegarra Restrepo M (2005) Palinoestratigrafía del neógeno en el pozo glomeroso-1, Cuenca de Veracruz, México. Master Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada. Ciencias de la Tierra, Departamento de Geología 137 p.Mexico

  • Zhou YC, Xu BH, Yu AB, Zulli P (2001) Numerical investigation of the angle of repose of monosized spheres. Phys Rev E 64:021301. https://doi.org/10.1103/PhysRevE.64.021301

    Article  Google Scholar 

  • Zhou Q, Liu X (2003) The accuracy assessment on algorithms that derive slope and aspect from DEM. In: Shi W, Goodchild MF, Fisher PF (Eds) Proceedings of the Second International Symposium on Spatial Data Quality. 19–20 March, Hong Kong 275–285

Download references

Acknowledgements

The authors thank two anonymous reviewers, Karoly Nemeth, and associate editor Laura Sandri. Their comments greatly improved this manuscript.

Funding

C. and L. Connor’s participation was funded by NASA grant (NNH 16-ESI16-0030). F. Córdoba-Montiel’s participation was funded by CONACyT project  no. 255598.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Sieron.

Additional information

Communicated by Editorial responsibility: L. Sandri.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieron, K., Juárez Cerrillo, S.F., González-Zuccolotto, K. et al. Morphology and distribution of monogenetic volcanoes in Los Tuxtlas Volcanic Field, Veracruz, Mexico: implications for hazard assessment. Bull Volcanol 83, 47 (2021). https://doi.org/10.1007/s00445-021-01467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01467-y

Keywords

Navigation