Skip to main content
Log in

Abundant exact closed-form solutions and solitonic structures for the double-chain deoxyribonucleic acid (DNA) model

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, the abundant exact closed-form solutions and dynamics of solitons for the double-chain deoxyribonucleic acid (DNA) model is obtained by utilizing the generalized exponential rational function (GERF) method. Deoxyribonucleic acid (DNA) retains the genetic information that creatures need to live and reproduce themselves. We obtained several novel exact soliton and exponential rational functional solutions in the shapes of dynamics of solitons like multi-solitons, breather-type solitons, abundant elastic interactions between multi-solitons, and nonlinear waves, oscillating multi-solitons, and Lump solitons. These derived solutions were never reported in the literature. The dynamical structures of some exact solitons are exhibited graphically by assigning suitable values to the free parameters via 3D figures. The generated solutions can be more useful and help to explain the internal interactions of the double-chain DNA model. The symbolic computational work and the obtained solutions show that the present proposed GERF method is effective, robust, and straightforward. Moreover, these types of higher-order NLEEs can be solved using the current technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Durur, Different types analytic solutions of the \((1+ 1)\)-dimensional resonant nonlinear Schrödinger’s equation using \((G^\prime /G )\)-expansion method, Modern Phys. Lett. B 34, no. 3, 2050036, 7 (2020)

  2. A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114, 478–482 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. T.A. Sulaiman et al. Investigation of the fractional coupled viscous Burgers’ equation involving Mittag-Leffler kernel, Phys. A 527, 121126, 20 (2019)

  4. S. Kumar, A. Kumar, Lie symmetry reductions and group Invariant Solutions of (2+1)-dimensional modified Veronese web equation. Nonlinear Dynam. 98(3), 1891–1903 (2019)

    Article  Google Scholar 

  5. S. Kumar, A. Kumar, H. Kharbanda, Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations. Phys. Scr. 95, 065207 (2020)

    Article  ADS  Google Scholar 

  6. S. Kumar, A. Kumar, A.M. Wazwaz, New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. Euro Phys J Plus. 135(11), 1–17 (2020)

    Google Scholar 

  7. S. Kumar, M. Niwas, A.M. Wazwaz, Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2 + 1)-dimensional NNV equations. Phys. Scr. 95, 095204 (2020)

    Article  ADS  Google Scholar 

  8. S. Kumar, M. Niwas, Lie symmetry reductions, abound exact solutions and localized wave structures of solitons for a (2 + 1)-dimensional Bogoyavlenskii equation. Modern Physics Letters B (2021). https://doi.org/10.1142/S0217984921502523

  9. S. Kumar, S. Rani, Lie symmetry analysis, group-invariant solutions and dynamics of solitons to the (2+1)-dimensional Bogoyavlenskii-Schieff equation. Pramana Journal of Physics 95, 0051 (2021)

    Article  ADS  Google Scholar 

  10. H.M. Baskonus, H. Bulut, T.A. Sulaiman, New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method. Appl. Math. Nonlinear Sci. 4(1), 141–150 (2019)

    MathSciNet  Google Scholar 

  11. S. Kumar, M. Niwas, H. Ihsanullah, Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa-Holm-Kadomtsev-Petviashvili equation. International Journal of Modern Physics B 35, 2150028 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  12. M.N. Aalm, E. Bonyah, M.F. Asad, M.S. Osman, K.M. Abualnaja, Stable and functional solutions of the Klein-Fock-Gordon equation with nonlinear physical phenomena, Physica Scripta 96(5), 055207 (2021)

  13. M.N. Aalm, M. S. Osman. New structures for closed-form wave solutions for the dynamical equations model related to the ion sound and Langmuir waves, Communications in Theoretical Physics 73(3), 035001 (2021)

  14. J.F. Gomez-Aguilar, M.S. Osman, N. Raza, A. Zubair, S. Arshed, M.E. Ghoneim, E.E. Mahmoud, A.H. Abdel-Aty, Optical solitons in birefringent fibers with quadratic-cubic nonlinearity using three integration architectures, AIP Advances 11(2), 025121 (2021)

  15. S. Kumar, B. Kour, S. W. Yao, M. Inc and M. S. Osman, Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim Fractional Kadomtsev-Petviashvili (KP) System, Symmetry 13 (3), 477 (2021)

  16. P.R. Kundu, H. Almusawa, M.R.A. Fahim, M.E. Islam, M.A. Akbar, M.S. Osman, Linear and nonlinear effects analysis on wave profiles in optics and quantum physics. Results in Physics 23, 103995 (2021)

    Article  Google Scholar 

  17. W.X. Ma, M.S. Osman, S. Arshed, N. Raza, H.M. Srivastava, Different analytical approaches for finding novel optical solitons in the single-mode fibers. Chinese Journal of Physics (2021). https://doi.org/10.1016/j.cjph.2021.01.015

    Article  Google Scholar 

  18. S. Malik, H. Almusawa, S. Kumar, A.M. Wazwaz, M.S. Osman, A (2+1)-dimensional Kadomtsev-Petviashvili equation with competing dispersion effect: Painlev analysis, dynamical behavior and invariant solutions. Results in Physics 23, 104043 (2021)

    Article  Google Scholar 

  19. M. Yang, M.S. Osman, J.G. Liu, Invariance Analysis, Abundant lump-type solutions for the extended (3+1)-dimensional Jimbo-Miwa equation, Results in Physics 23, 104009 (2021)

  20. S. Homma, S. Takeno, A coupled base-rotator model for structure and dynamics of DNA–local fluctuations in helical twist angles and topological solitons. Progr. Theoret. Phys. 72(4), 679–693 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  21. D.X. Kong, S.Y. Lou, J. Zeng, Nonlinear dynamics in a new double Chain-model of DNA. Communications in Theoretical Phys. 36(6), 737–742 (2001)

    Article  ADS  Google Scholar 

  22. M. Peyrard, S. Cuesta-López, G. James, Modelling DNA at the mesoscale: a challenge for nonlinear science? Nonlinearity 21(6), T91–T100 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Yomosa, Soliton excitations in deoxyribonucleic acid (DNA) double helices, Phys. Rev. A 27(4), 2120–2125 (1983)

  24. C.T. Zhang, Soliton excitations in deoxyribonucleic acid (DNA) double helices, Phys. Rev. A 35(2), 886–891 (1987)

  25. J.M. Bahi, C. Guyeux, A. Perasso. Chaos in DNA evolution, Int. J. Biomath. 9(5), 1650076, 17 (2016)

  26. J.D. Watson, F.H.C. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 171, 737–738 (1953)

    Article  ADS  Google Scholar 

  27. S. Englander, N. Kallenbach, A. Heeger, J. Krumhansl, S. Litwin, Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proceedings of the National Academy of Sciences 77, 7222–7226 (1980)

    Article  ADS  Google Scholar 

  28. M. Peyrard, A.R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation. Physical review letters 62, 2755 (1989)

    Article  ADS  Google Scholar 

  29. V. Muto, P. Lomdahl, P. Christiansen, Two-dimensional discrete model for DNA dynamics: longitudinal wave propagation and denaturation. Physical Review A 42, 7452 (1990)

    Article  ADS  Google Scholar 

  30. X.M. Qian, S.Y. Lou, Exact solutions of nonlinear dynamics equation in a new double-chain model of DNA. Commun. Theor. Phys. (Beijing) 39(4), 501–505 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Z. Ouyang and S. Zheng, Travelling wave solutions of nonlinear dynamical equations in a double-chain model of DNA, Abstr. Appl. Anal Art. ID 317543, 5 (2014)

  32. S.M. Mabrouk, Explicit Solutions of Double-Chain DNA Dynamical System in (2+ 1)-Dimensions. International Journal of Current Engineering and Technology 9, 655–660 (2019)

    Google Scholar 

  33. R. Saleh, S.M. Mabrouk, A.M. Wazwaz, Lie symmetry analysis of a stochastic gene evolution in double-chain deoxyribonucleic acid system. Waves in Random and Complex Media 1–15 (2021). https://doi.org/10.1080/17455030.2020.1871109

  34. B. Ghanbari, M. Inc, A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schridinger equation. Eur. Phys. J. Plus 133, 142 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, A. & Kharbanda, H. Abundant exact closed-form solutions and solitonic structures for the double-chain deoxyribonucleic acid (DNA) model. Braz J Phys 51, 1043–1068 (2021). https://doi.org/10.1007/s13538-021-00913-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00913-8

Keywords

Navigation