Skip to main content
Log in

A Strongly Convergent Proximal Point Method for Vector Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a variant of the proximal point method for obtaining weakly efficient solutions of convex vector optimization problems in real Hilbert spaces, with respect to a partial order induced by a closed, convex and pointed cone with nonempty interior. The proposed method is a hybrid scheme that combines proximal point type iterations and projections onto some special halfspaces in order to achieve the strong convergence to a weakly efficient solution. To the best of our knowledge, this is the first time that proximal point type method with strong convergence has been considered in the literature for solving vector/multiobjective optimization problems in infinite dimensional Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26(2), 248–264 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

  3. Bello Cruz, J.Y.: A subgradient method for vector optimization problems. SIAM J. Optim. 23(4), 2169–2182 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bello Cruz, J.Y., Díaz Millán, R. Phan, H. M.: Conditional extragradient algorithms for solving variational inequalities. Pac. J. Optim. 15(3),331–357 (2019)

  5. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent method for nonsmooth convex minimization in Hilbert spaces. Numer. Funct. Anal. Optim. 32(10), 1009–1018 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bello Cruz, J.Y., Lucambio Pérez, L.R., Melo, J.G.: Convergence of the projected gradient method for quasiconvex multiobjective optimization. Nonlinear Anal. 74(16), 5268–5273 (2011)

    Article  MathSciNet  Google Scholar 

  7. Bello Cruz, J.Y., Lucambio Pérez, L.R.: A subgradient-like algorithm for solving vector convex inequalities. J. Optim. Theory Appl. 162(2), 392–404 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bello Cruz, J.Y., Melo, J.G., Serra, R.G.: A proximal gradient splitting method for solving convex vector optimization problems. Optimization (2020). https://doi.org/10.1080/02331934.2020.1800699

    Article  Google Scholar 

  9. Bello Cruz, J.Y., Oliveira, W.D.: On weak and strong convergence of the projected gradient method for convex optimization in real Hilbert spaces. Numer. Funct. Anal. Optim. 37(2), 129–144 (2016)

    Article  MathSciNet  Google Scholar 

  10. Bento, G.C., Cruz Neto, J.X., Meireles, L.: Proximal point method for locally Lipschitz functions in multiobjective optimization of Hadamard manifolds. J. Optim. Theory Appl. 179(1), 37–52 (2018)

    Article  MathSciNet  Google Scholar 

  11. Bento, G.C., Cruz Neto, J.X., Soubeyran, A.: A proximal point-type method for multicriteria optimization. Set-Valued Var. Anal. 22(3), 557–573 (2014)

    Article  MathSciNet  Google Scholar 

  12. Bento, G.C., Cruz Neto, J.X., López, G., Soubeyran, A., Souza, J.C.O.: The proximal point method for locally Lipschitz functions in multiobjective optimization with application to the compromise problem. SIAM J. Optim. 28(2), 1104–1120 (2018)

  13. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154(1), 88–107 (2012)

    Article  MathSciNet  Google Scholar 

  14. Bento, G.C., Ferreira, O.P., Pereira, Y.: Proximal point method for vector optimization on Hadamard manifolds. Oper. Res. Lett. 46(1), 13–18 (2018)

    Article  MathSciNet  Google Scholar 

  15. Bento, G.C., Ferreira, O.P., Sousa Junior, V.L.: Proximal point method for a special class of nonconvex multiobjective optimization functions. Optim. Lett. 12(2), 311–320 (2018)

    Article  MathSciNet  Google Scholar 

  16. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)

    Article  MathSciNet  Google Scholar 

  17. Boţ, R., Grad, S.M.: Inertial forward-backward methods for solving vector optimization problems. Optimization 67(7), 959–974 (2018)

    Article  MathSciNet  Google Scholar 

  18. Brezis, H., Lions, P.L.: Infinite Products of Resolvents. Israel J. Math. 29(4), 329–345 (1978)

    Article  MathSciNet  Google Scholar 

  19. Ceng, L.C., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal method with auxiliary variational inequality for vector optimization. J. Optim. Theory Appl. 146(2), 267–303 (2010)

    Article  MathSciNet  Google Scholar 

  20. Cruz Neto, J.X., Da Silva, G.J.P., Ferreira, O.P., Lopes, J.O.: A subgradient method for multiobjective optimization. Comput. Optim. Appl. 54(3), 461–472 (2013)

  21. Ferreira, O.P., Louzeiro, M.S., Prudente, L.F.: Gradient method for optimization on Riemannian manifolds with lower bounded curvature. SIAM J. Optim. 29(4), 2517–2541 (2019)

    Article  MathSciNet  Google Scholar 

  22. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  Google Scholar 

  23. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  Google Scholar 

  24. Gárciga, O., Iusem, A.N., Svaiter, B.F.: On the need for hybrid steps in hybrid proximal point methods. Oper. Res. Lett. 29(5), 217–220 (2001)

    Article  MathSciNet  Google Scholar 

  25. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004)

    Article  MathSciNet  Google Scholar 

  26. Graña Drummond, L.M., Raupp, F.M.P., Svaiter, B.F.: A quadratically convergent Newton method for vector optimization. Optimization 63(5), 661–677 (2014)

  27. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    Article  MathSciNet  Google Scholar 

  28. Grad, S.M.: A survey on proximal point type algorithm for solving vector optimization problems. In: Bauschke, H., Burachik, R., Luke, D. (eds.) Splitting Algorithms, Modern Operator Theory, and Applications. Springer, Cham (2019)

    Google Scholar 

  29. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29(2), 403–419 (1991)

    Article  MathSciNet  Google Scholar 

  30. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algorithms I, vol. 305. Springer-Verlag, Berlin (1993)

    Book  Google Scholar 

  31. Lions, P.L.: An Iterative Method for Solving Variational Inequality. Israel J. Math. 31(2), 204–208 (1978)

    Article  MathSciNet  Google Scholar 

  32. Lu, F., Chen, C.R.: Newton-like methods for solving vector optimization problems. Appl. Anal. 93(8), 1567–1586 (2014)

    Article  MathSciNet  Google Scholar 

  33. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer-Verlag, Berlin (1989)

  34. Lucambio Pérez, L.R., Prudente, L.F.: Nonlinear conjugate gradient methods for vector optimization. SIAM J. Optim. 28(3), 2690–2720 (2018)

    Article  MathSciNet  Google Scholar 

  35. Marques Alves, M., Melo, J.G.: Strong convergence in Hilbert spaces via \(\Gamma \)-duality. J. Optim. Theory Appl. 158(2), 343–362 (2013)

    Article  MathSciNet  Google Scholar 

  36. Martinet, B.: Regularization of Variational Inequalities by Successive Approximations. Rev. Française de Inform. 4, 154–159 (1970)

    MATH  Google Scholar 

  37. Martinet, B.: Algorithms for Solving Optimization and Minimax Problems. Habilitation à diriger des recherches, Université Joseph-Fourier - Grenoble I (1972). https://tel.archives-ouvertes.fr/tel-00284255. Université : Université scientifique et médicale de Grenoble

  38. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  39. Rockafellar, R.T.: A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Program. 5(1), 354–373 (1973)

    Article  MathSciNet  Google Scholar 

  40. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  41. Solodov, M., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  42. Solodov, M., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a hilbert space. Math. Program. 87(1), 189–202 (2000)

    Article  MathSciNet  Google Scholar 

  43. Svaiter, B.: A new duality theory for mathematical programming. Optimization 60(8–9), 1209–1231 (2011)

    Article  MathSciNet  Google Scholar 

  44. Tanabe, H., Fukuda, E.H., Yamashita, N.: Proximal gradient methods for multiobjective optimization and their applications. Comput. Optim. Appl. 72(2), 339–361 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable suggestions and remarks that allowed us to improve the first draft of the paper. The work of the second author is supported in part by FAPEG/CNPq/PRONEM-201710267000532 and CNPq-312559/2019-4. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson G. Melo.

Additional information

Communicated by Guang-ya Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iusem, A.N., Melo, J.G. & Serra, R.G. A Strongly Convergent Proximal Point Method for Vector Optimization. J Optim Theory Appl 190, 183–200 (2021). https://doi.org/10.1007/s10957-021-01877-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01877-0

Keywords

Mathematics Subject Classification

Navigation