Skip to main content
Log in

Theoretical Study of Enhanced Plasmonic–Photonic Hybrid Cavity Modes in Reciprocal Plasmonic Metasurfaces

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A new configuration for metasurface construction is presented to exhibit potential multi-functionalities including perfect absorption, bio/chem sensing, and enhancement of light–matter interaction. The reciprocal plasmonic metasurfaces discussed here are composed of two plasmonic surfaces of reciprocal geometries separated by a dielectric spacer. Compared to conventional metasurfaces this simple geometry exhibits an enhanced optical performance due to the hybrid plasmonic–photonic cavity. The discussed reciprocal metasurface design further enables effective structural optimization and allows for a simple and scalable fabrication. The physical principle and potential applications of the reciprocal plasmonic metasurfaces are demonstrated using numerical and analytical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cai W, Shalaev V (2009) Optical Metamaterials: Fundamentals and Applications. Springer Science & Business Media

  2. Landy N, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  Google Scholar 

  3. Chen HT, Zhou J, O’Hara JF, Chen F, Azad AK, Taylor AJ (2010) Antireflection coating using metamaterials and identification of its mechanism. Phys Rev Lett 105(7):073901

    Article  Google Scholar 

  4. Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97(25):253116

    Article  Google Scholar 

  5. Shchegolkov DY, Azad A, O’hara J, Simakov E (2010) Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Phys Rev B 82(20):205117

  6. Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19(18):17413–17420

    Article  CAS  Google Scholar 

  7. Vázquez-Guardado A, Safaei A, Modak S, Franklin D, Chanda D (2014) Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances. Phys Rev Lett 113(26):263902

    Article  Google Scholar 

  8. Wang BX, He Y, Lou P, Zhu H (2021) Multi-band terahertz superabsorbers based on perforated square-patch metamaterials. Nanoscale Adv 3(2):455–462

    Article  CAS  Google Scholar 

  9. Wang BX, He Y, Lou P, Xing W (2020) Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv 2(2):763–769

    Article  CAS  Google Scholar 

  10. Wang BX, Tang C, Niu Q, He Y, Chen R (2019) A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot. Nanoscale Adv 1(9):3621–3625

    Article  CAS  Google Scholar 

  11. Ye YQ, Jin Y, He S (2010) Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA B 27(3):498–504

    Article  CAS  Google Scholar 

  12. Wu C, Burton Neuner I, Shvets G, John J, Milder A, Zollars B, Savoy S (2011) Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B 84(7):075102

    Article  Google Scholar 

  13. Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo IC, Chen S, Huang TJ (2011) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19(16):15221–15228

    Article  CAS  Google Scholar 

  14. Chen K, Dao TD, Ishii S, Aono M, Nagao T (2015) Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Adv Funct Mater 25(42):6637–6643

    Article  CAS  Google Scholar 

  15. Feng Q, Pu M, Hu C, Luo X (2012) Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett 37(11):2133–2135

    Article  CAS  Google Scholar 

  16. Shrestha S, Wang Y, Overvig AC, Lu M, Stein A, Negro LD, Yu N (2018) Indium tin oxide broadband metasurface absorber. ACS Photonics 5(9):3526–3533

    Article  CAS  Google Scholar 

  17. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  CAS  Google Scholar 

  18. Artar A, Yanik AA, Altug H (2009) Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl Phys Lett 95(5):051105

    Article  Google Scholar 

  19. Lu X, Wan R, Zhang T (2015) Metal-dielectric-metal based narrow band absorber for sensing applications. Opt Express 23(23):29842–29847

    Article  CAS  Google Scholar 

  20. Hentschel M, Weiss T, Bagheri S, Giessen H (2013) Babinet to the half: coupling of solid and inverse plasmonic structures. Nano Lett 13(9):4428–4433

    Article  CAS  Google Scholar 

  21. Wang BX, Wang GZ, Wang LL (2016) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11(2):523–530

    Article  CAS  Google Scholar 

  22. Dao TD, Doan AT, Ngo DH, Chen K, Ishii S, Tamanai A, Nagao T (2019) Selective thermal emitters with infrared plasmonic indium tin oxide working in the atmosphere. Opt Mater Express 9(6):2534–2544

    Article  CAS  Google Scholar 

  23. Dao TD, Chen K, Ishii S, Ohi A, Nabatame T, Kitajima M, Nagao T (2015) Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers. ACS Photonics 2(7):964–970

    Article  CAS  Google Scholar 

  24. D’Archangel JA, Shelton DJ, Hudgins R, Poutous MK, Boreman GD (2014) Large area infrared frequency selective surface with dimensions reproducible by optical lithography. J Vac Sci Technol B Nanotechnol Microelectron: Mater Process Meas Phenom 32(5):051807

    Article  Google Scholar 

  25. Chen HT (2012) Interference theory of metamaterial perfect absorbers. Opt Express 20(7):7165–7172

    Article  Google Scholar 

  26. Li Y, Fullager D, Angelbello E, Childers D, Boreman G, Hofmann T (2018) Broadband near-infrared antireflection coatings fabricated by three-dimensional direct laser writing. Opt Lett 43(2):239–242

    Article  CAS  Google Scholar 

  27. Li Y, Park S, McLamb M, Lata M, Schöche S, Childers D, Aggarwal I, Poutous M, Boreman G, Hofmann T (2019) UV to NIR optical properties of IP-Dip, IP-L, and IP-S after two-photon polymerization determined by spectroscopic ellipsometry. Opt Mater Express 9(11):4318–4328

    Article  CAS  Google Scholar 

  28. Li Y, Fullager D, Park S, Childers D, Fesperman R, Boreman G, Hofmann T (2018) High-contrast infrared polymer photonic crystals fabricated by direct laser writing. Opt Lett 43(19):4711–4714

    Article  CAS  Google Scholar 

  29. Fullager DB, Boreman GD, Hofmann T (2017) Infrared dielectric response of nanoscribe IP-Dip and IP-L monomers after polymerization from 250 cm\(^{- 1}\) to 6000 cm\(^{- 1}\). Opt Mater Express 7(3):888–894

    Article  CAS  Google Scholar 

  30. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038

    Article  CAS  Google Scholar 

  31. Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167

    Article  CAS  Google Scholar 

  32. Lee Y, Kim SJ, Park H, Lee B (2017) Metamaterials and metasurfaces for sensor applications. Sensors 17(8):1726

    Article  Google Scholar 

  33. Wang BX, Wang GZ, Sang T (2016) Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J Phys D Appl Phys 49(16):165307

    Article  Google Scholar 

Download references

Funding

The authors are grateful for support from the National Science Foundation (1624572) within the IUCRC Center for Metamaterials and through the NSF MRI 1828430, the Army Research Office (W911NF-14-1-0299) and the Department of Physics and Optical Science of the University of North Carolina at Charlotte.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. developed the theory and the numerical simulations and took the lead in writing the manuscript with support from M.M. and S.P.. D.C. provided the funding support and critical discussions. G.D.B. offered insightful feedback and helped shape the analysis and manuscript. T.H. contributed to the final version of the manuscript and supervised the research project.

Corresponding author

Correspondence to Yanzeng Li.

Ethics declarations

Competing Interests

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., McLamb, M., Park, S. et al. Theoretical Study of Enhanced Plasmonic–Photonic Hybrid Cavity Modes in Reciprocal Plasmonic Metasurfaces. Plasmonics 16, 2241–2247 (2021). https://doi.org/10.1007/s11468-021-01456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01456-z

Keywords

Navigation