Skip to main content
Log in

Prefrontal cortex activation during dual-task walking in older adults is moderated by thickness of several cortical regions

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Dual tasking, a defined facet of executive control processes, is subserved, in part, by the prefrontal cortex (PFC). Previous functional near-infrared spectroscopy (fNIRS) studies revealed elevated PFC oxygenated hemoglobin (HbO2) under Dual-Task-Walk (DTW) compared to Single-Task Walk (STW) conditions. Based on the concept of neural inefficiency (i.e., greater activation coupled with similar or worse performance), we hypothesized that decreased cortical thickness across multiple brain regions would be associated with greater HbO2 increases from STW to DTW. Participants were 55 healthy community-dwelling older adults, whose cortical thickness was measured via MRI. HbO2 levels in the PFC, measured via fNIRS, were assessed during active walking under STW and DTW conditions. Statistical analyses were adjusted for demographics and behavioral performance. Linear mixed-effects models revealed that the increase in HbO2 from STW to DTW was moderated by cortical thickness in several regions. Specifically, thinner cortex in specific regions of the frontal, parietal, temporal, and occipital lobes, cingulate cortex, and insula was associated with greater increases in HbO2 levels from single to dual-task walking. In conclusion, participants with thinner cortex in regions implicated in higher order control of walking employed greater neural resources, as measured by increased HbO2, in the PFC during DTW, without demonstrating benefits to behavioral performance. To our knowledge, this is the first study to examine cortical thickness as a marker of neural inefficiency during active walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

Data may be provided on request to the corresponding author.

Code availability

Not applicable.

References

  1. Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging. 2009;13(10):881–9. https://doi.org/10.1007/s12603-009-0246-z.

    Article  CAS  PubMed  Google Scholar 

  2. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–8. https://doi.org/10.1001/jama.2010.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23(3):329–42; quiz 472. https://doi.org/10.1002/mds.21720.

  4. Holtzer R, Verghese J, Xue X, Lipton RB. Cognitive processes related to gait velocity: results from the Einstein aging study. Neuropsychology. 2006;20(2):215–23. https://doi.org/10.1037/0894-4105.20.2.215.

    Article  PubMed  Google Scholar 

  5. Meyer DE, Kieras DE. A computational theory of executive cognitive processes and multiple-task performance: Part 2. Accounts of psychological refractory-period phenomena. Psychol Rev. 1997;104(4):749–91. https://doi.org/10.1037/0033-295X.104.4.749.

    Article  Google Scholar 

  6. Baddeley AD. Is working memory still working? Eur Psychol. 2002;7(2):85–97. https://doi.org/10.1027/1016-9040.7.2.85.

    Article  Google Scholar 

  7. Holtzer R, Wang C, Verghese J. The relationship between attention and gait in aging: facts and fallacies. Mot Control. 2012;16(1):64–80. https://doi.org/10.1123/mcj.16.1.64.

    Article  Google Scholar 

  8. Holtzer R, Wang C, Verghese J. Performance variance on walking while talking tasks: theory, findings, and clinical implications. Age (Dordr). 2014;36(1):373–81. https://doi.org/10.1007/s11357-013-9570-7.

    Article  Google Scholar 

  9. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16(1):1–14.

    Article  PubMed  Google Scholar 

  10. Leland A, Tavakol K, Scholten J, Mathis D, Maron D, Bakhshi S. The role of dual tasking in the assessment of gait, cognition and community reintegration of veterans with mild traumatic brain injury. Mater Sociomed. 2017;29(4):251–6. https://doi.org/10.5455/msm.2017.29.251-256.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Holtzer R, Stern Y, Rakitin BC. Age-related differences in executive control of working memory. Mem Cognit. 2004;32(8):1333–45. https://doi.org/10.3758/bf03206324.

    Article  PubMed  Google Scholar 

  12. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. 2012;60(11):2127–36. https://doi.org/10.1111/j.1532-5415.2012.04209.x.

  13. Montero-Odasso MM, Sarquis-Adamson Y, Speechley M, et al. Association of dual-task gait with incident dementia in mild cognitive impairment: results from the gait and brain study. JAMA Neurol. 2017;74(7):857–65. https://doi.org/10.1001/jamaneurol.2017.0643.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Verghese J, Holtzer R, Lipton RB, Wang C. Mobility stress test approach to predicting frailty, disability, and mortality in high-functioning older adults. J Am Geriatr Soc. 2012;60(10):1901–5. https://doi.org/10.1111/j.1532-5415.2012.04145.x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Izzetoglu K, Bunce S, Onaral B, Pourrezaei K, Chance B. Functional optical brain imaging using near-infrared during cognitive tasks. Int J Hum-Comput Interact. 2004;17(2):211–27. https://doi.org/10.1207/s15327590ijhc1702_6.

    Article  Google Scholar 

  16. Bunce SC, Izzetoglu M, Izzetoglu K, Onaral B, Pourrezaei K. Functional near-infrared spectroscopy. IEEE Eng Med Biol Mag. 2006;25(4):54–62.

    Article  PubMed  Google Scholar 

  17. Gramigna V, Pellegrino G, Cerasa A, Cutini S, Vasta R, Olivadese G, et al. Near-infrared spectroscopy in gait disorders: is it time to begin? Neurorehabil Neural Repair. 2017;31(5):402–12. https://doi.org/10.1177/1545968317693304.

    Article  PubMed  Google Scholar 

  18. Udina C, Avtzi S, Durduran T, Holtzer R, Rosso AL, Castellano-Tejedor C, et al. Functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: a review. Front Aging Neurosci. 2019;11:367. https://doi.org/10.3389/fnagi.2019.00367.

    Article  PubMed  Google Scholar 

  19. Menant JC, Maidan I, Alcock L, Al-Yahya E, Cerasa A, Clark DJ, et al. A consensus guide to using functional near-infrared spectroscopy in posture and gait research. Gait Posture. 2020;82:254–65. https://doi.org/10.1016/j.gaitpost.2020.09.012.

    Article  PubMed  Google Scholar 

  20. Agbangla NF, Audiffren M, Albinet CT. Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: a systematic review of an emerging area of research. Ageing Res Rev. 2017;38:52–66. https://doi.org/10.1016/j.arr.2017.07.003.

    Article  PubMed  Google Scholar 

  21. Holtzer R, Mahoney JR, Izzetoglu M, Izzetoglu K, Onaral B, Verghese J. fNIRS study of walking and walking while talking in young and old individuals. J Gerontol A Biol Sci Med Sci. 2011;66(8):879–87. https://doi.org/10.1093/gerona/glr068.

    Article  PubMed  Google Scholar 

  22. Holtzer R, Mahoney JR, Izzetoglu M, Wang C, England S, Verghese J. Online fronto-cortical control of simple and attention-demanding locomotion in humans. Neuroimage. 2015;112:152–9. https://doi.org/10.1016/j.neuroimage.2015.03.002.

    Article  PubMed  Google Scholar 

  23. Holtzer R, Schoen C, Demetriou E, Mahoney JR, Izzetoglu M, Wang C, et al. Stress and gender effects on prefrontal cortex oxygenation levels assessed during single and dual-task walking conditions. Eur J Neurosci. 2017;45(5):660–70. https://doi.org/10.1111/ejn.13518.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bishnoi A, Holtzer R, Hernandez ME. Brain activation changes while walking in adults with and without neurological disease: systematic review and meta-analysis of functional near-infrared spectroscopy studies. Brain Sci. 2021;11(3). https://doi.org/10.3390/brainsci11030291.

  25. Metzger FG, Ehlis AC, Haeussinger FB, Schneeweiss P, Hudak J, Fallgatter AJ, et al. Functional brain imaging of walking while talking – an fNIRS study. Neuroscience. 2017;343:85–93. https://doi.org/10.1016/j.neuroscience.2016.11.032.

    Article  CAS  PubMed  Google Scholar 

  26. Stuart S, Alcock L, Rochester L, Vitorio R, Pantall A. Monitoring multiple cortical regions during walking in young and older adults: dual-task response and comparison challenges. Int J Psychophysiol. 2019;135:63–72. https://doi.org/10.1016/j.ijpsycho.2018.11.006.

    Article  PubMed  Google Scholar 

  27. De Sanctis P, Butler JS, Malcolm BR, Foxe JJ. Recalibration of inhibitory control systems during walking-related dual-task interference: a mobile brain-body imaging (MOBI) study. Neuroimage. 2014;94:55–64. https://doi.org/10.1016/j.neuroimage.2014.03.016.

    Article  PubMed  Google Scholar 

  28. Nenna F, Do CT, Protzak J, Gramann K. Alteration of brain dynamics during dual-task overground walking. Eur J Neurosci. 2020. https://doi.org/10.1111/ejn.14956.

    Article  PubMed  Google Scholar 

  29. Cortney Bradford J, Lukos JR, Passaro A, Ries A, Ferris DP. Effect of locomotor demands on cognitive processing. Sci Rep. 2019;9(1):9234. https://doi.org/10.1038/s41598-019-45396-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holtzer R, Epstein N, Mahoney JR, Izzetoglu M, Blumen HM. Neuroimaging of mobility in aging: a targeted review. J Gerontol A Biol Sci Med Sci. 2014;69(11):1375–88. https://doi.org/10.1093/gerona/glu052.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wilson J, Allcock L, Mc Ardle R, Taylor J-P, Rochester L. The neural correlates of discrete gait characteristics in ageing: a structured review. Neurosci Biobehav Rev. 2019;100:344–69. https://doi.org/10.1016/j.neubiorev.2018.12.017.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yuan J, Blumen HM, Verghese J, Holtzer R. Functional connectivity associated with gait velocity during walking and walking-while-talking in aging: a resting-state fMRI study. Hum Brain Mapp. 2015;36(4):1484–93. https://doi.org/10.1002/hbm.22717.

    Article  PubMed  Google Scholar 

  33. Doi T, Blumen HM, Verghese J, Shimada H, Makizako H, Tsutsumimoto K, et al. Gray matter volume and dual-task gait performance in mild cognitive impairment. Brain Imaging Behav. 2017;11(3):887–98. https://doi.org/10.1007/s11682-016-9562-1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29(4):737–52. https://doi.org/10.1016/j.cger.2013.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Terribilli D, Schaufelberger MS, Duran FLS, Zanetti MV, Curiati PK, Menezes PR, et al. Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol Aging. 2011;32(2):354–68. https://doi.org/10.1016/j.neurobiolaging.2009.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, et al. Age-related changes in grey and white matter structure throughout adulthood. Neuroimage. 2010;51(3):943–51. https://doi.org/10.1016/j.neuroimage.2010.03.004.

    Article  PubMed  Google Scholar 

  37. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, et al. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004;14(7):721–30. https://doi.org/10.1093/cercor/bhh032.

    Article  PubMed  Google Scholar 

  38. Burzynska AZ, Nagel IE, Preuschhof C, Gluth S, Backman L, Li SC, et al. Cortical thickness is linked to executive functioning in adulthood and aging. Hum Brain Mapp. 2012;33(7):1607–20. https://doi.org/10.1002/hbm.21311.

    Article  PubMed  Google Scholar 

  39. Haier RJ, Siegel B, Tang C, Abel L, Buchsbaum MS. Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence. 1992;16:415–26.

    Article  Google Scholar 

  40. Haier RJ, Siegel BV, Neucheterlein KH, Hazlett E, Wu JC, Paek J, Browning HL, Buchsbaum MS. Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence. 1988;12(2):199–217. https://doi.org/10.1016/0160-2896(88)90016-5.

    Article  Google Scholar 

  41. Neubauer AC, Fink A. Intelligence and neural efficiency. Neurosci Biobehav Rev. 2009;33(7):1004–23. https://doi.org/10.1016/j.neubiorev.2009.04.001.

    Article  PubMed  Google Scholar 

  42. Lucas M, Wagshul ME, Izzetoglu M, Holtzer R. Moderating effect of white matter integrity on brain activation during dual-task walking in older adults. J Gerontol A Biol Sci Med Sci. 2018. https://doi.org/10.1093/gerona/gly131.

  43. Wagshul ME, Lucas M, Ye K, Izzetoglu M, Holtzer R. Multi-modal neuroimaging of dual-task walking: structural MRI and fNIRS analysis reveals prefrontal grey matter volume moderation of brain activation in older adults. Neuroimage. 2019;189:745–54. https://doi.org/10.1016/j.neuroimage.2019.01.045.

    Article  PubMed  Google Scholar 

  44. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53(3):1135–46. https://doi.org/10.1016/j.neuroimage.2009.12.028.

    Article  PubMed  Google Scholar 

  45. Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage. 2009;48(2):371–80. https://doi.org/10.1016/j.neuroimage.2009.06.043.

    Article  PubMed  Google Scholar 

  46. Lipton RB, Katz MJ, Kuslansky G, Sliwinski MJ, Stewart WF, Verghese J, et al. Screening for dementia by telephone using the memory impairment screen. J Am Geriatr Soc. 2003;51(10):1382–90. https://doi.org/10.1046/j.1532-5415.2003.51455.x.

    Article  PubMed  Google Scholar 

  47. Galvin JE, Roe CM, Xiong C, Morris JC. Validity and reliability of the AD8 informant interview in dementia. Neurology. 2006;67(11):1942–8. https://doi.org/10.1212/01.wnl.0000247042.15547.eb.

    Article  PubMed  Google Scholar 

  48. Holtzer R, Verghese J, Wang C, Hall CB, Lipton RB. Within-person across-neuropsychological test variability and incident dementia. JAMA. 2008;300(7):823–30. https://doi.org/10.1001/jama.300.7.823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holtzer R, Verghese J, Allali G, Izzetoglu M, Wang C, Mahoney JR. Neurological gait abnormalities moderate the functional brain signature of the posture first hypothesis. Brain Topogr. 2016;29(2):334–43. https://doi.org/10.1007/s10548-015-0465-z.

    Article  PubMed  Google Scholar 

  50. England SE, Verghese J, Mahoney JR, Trantzas C, Holtzer R. Three-level rating of turns while walking. Gait Posture. 2015;41(1):300–3. https://doi.org/10.1016/j.gaitpost.2014.09.010.

    Article  PubMed  Google Scholar 

  51. Chen M, Blumen HM, Izzetoglu M, Holtzer R. Spatial coregistration of functional near-infrared spectroscopy to brain MRI. J Neuroimaging. 2017;27(5):453–60. https://doi.org/10.1111/jon.12432.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ayaz H, Izzetoglu M, Platek SM, Bunce S, Izzetoglu K, Pourrezaei K, et al. Registering fNIR data to brain surface image using MRI templates. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2671–4. https://doi.org/10.1109/iembs.2006.260835.

    Article  PubMed  Google Scholar 

  53. Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, et al. Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage. 2011;54(4):2922–36. https://doi.org/10.1016/j.neuroimage.2010.10.058.

    Article  PubMed  Google Scholar 

  54. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14(5):1186–92. https://doi.org/10.1006/nimg.2001.0905.

    Article  CAS  PubMed  Google Scholar 

  55. Izzetoglu M, Holtzer R. Effects of Processing methods on fNIRS signals assessed during active walking tasks in older adults. IEEE Trans Neural Syst Rehabil Eng. 2020;28(3):699–709. https://doi.org/10.1109/tnsre.2020.2970407.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Molavi B, Dumont GA. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol Meas. 2012;33(2):259–70. https://doi.org/10.1088/0967-3334/33/2/259.

    Article  PubMed  Google Scholar 

  57. Kim JG, Liu H. Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy. Phys Med Biol. 2007;52(20):6295–322. https://doi.org/10.1088/0031-9155/52/20/014.

    Article  CAS  PubMed  Google Scholar 

  58. Scholkmann F, Wolf M. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J Biomed Opt. 2013;18(10):105004. https://doi.org/10.1117/1.Jbo.18.10.105004.

    Article  PubMed  Google Scholar 

  59. Scholkmann F, Spichtig S, Muehlemann T, Wolf M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol Meas. 2010;31(5):649–62. https://doi.org/10.1088/0967-3334/31/5/004.

    Article  CAS  PubMed  Google Scholar 

  60. Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–81. https://doi.org/10.1016/j.neuroimage.2012.01.021.

    Article  PubMed  Google Scholar 

  61. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55. https://doi.org/10.1016/s0896-6273(02)00569-x.

    Article  CAS  PubMed  Google Scholar 

  62. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11–22. https://doi.org/10.1093/cercor/bhg087.

    Article  PubMed  Google Scholar 

  63. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–80. https://doi.org/10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  64. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–19. https://doi.org/10.1016/j.neuroimage.2004.07.051.

    Article  PubMed  Google Scholar 

  65. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009;45(1 Suppl):S173–86. https://doi.org/10.1016/j.neuroimage.2008.10.055.

    Article  PubMed  Google Scholar 

  66. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62(2):782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015.

    Article  PubMed  Google Scholar 

  67. Randolph C, Tierney MC, Mohr E, Chase TN. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20(3):310–9. https://doi.org/10.1076/jcen.20.3.310.823.

    Article  CAS  PubMed  Google Scholar 

  68. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol). 1995;57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    Article  Google Scholar 

  69. Marinescu RV, Eshaghi A, Alexander DC, Golland P. BrainPainter: a software for the visualisation of brain structures, biomarkers and associated pathological processes. Multimodal Br. 2019;11846:112–20. https://doi.org/10.1007/978-3-030-33226-6_13.

    Article  Google Scholar 

  70. Sanabria-Diaz G, Melie-García L, Iturria-Medina Y, Alemán-Gómez Y, Hernández-González G, Valdés-Urrutia L, et al. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage. 2010;50(4):1497–510. https://doi.org/10.1016/j.neuroimage.2010.01.028.

    Article  PubMed  Google Scholar 

  71. Lim SH, Dinner DS, Pillay PK, Lüders H, Morris HH, Klem G, et al. Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr Clin Neurophysiol. 1994;91(3):179–93. https://doi.org/10.1016/0013-4694(94)90068-x.

    Article  CAS  PubMed  Google Scholar 

  72. Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex. Neuron. 2007;56(2):366–83. https://doi.org/10.1016/j.neuron.2007.10.012.

    Article  CAS  PubMed  Google Scholar 

  73. Grill-Spector K, Kourtzi Z, Kanwisher N. The lateral occipital complex and its role in object recognition. Vision Res. 2001;41(10–11):1409–22. https://doi.org/10.1016/s0042-6989(01)00073-6.

    Article  CAS  PubMed  Google Scholar 

  74. Cant JS, Goodale MA. Attention to form or surface properties modulates different regions of human occipitotemporal cortex. Cereb Cortex. 2007;17(3):713–31. https://doi.org/10.1093/cercor/bhk022.

    Article  PubMed  Google Scholar 

  75. Parker JG, Zalusky EJ, Kirbas C. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search. Brain Behav. 2014;4(2):227–37. https://doi.org/10.1002/brb3.213.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz G, Hénaff MA, et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain. 2000;123(Pt 2):291–307. https://doi.org/10.1093/brain/123.2.291.

    Article  PubMed  Google Scholar 

  77. Krishnan V, Cho YH, Mohamed O. Role of impaired vision during dual-task walking in young and older adults. Gait Posture. 2017;57:136–40. https://doi.org/10.1016/j.gaitpost.2017.06.006.

    Article  PubMed  Google Scholar 

  78. Gerrits R, Van der Haegen L, Brysbaert M, Vingerhoets G. Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex. 2019;117:196–204. https://doi.org/10.1016/j.cortex.2019.03.010.

    Article  PubMed  Google Scholar 

  79. Houde JF, Nagarajan SS, Sekihara K, Merzenich MM. Modulation of the auditory cortex during speech: an MEG study. J Cogn Neurosci. 2002;14(8):1125–38. https://doi.org/10.1162/089892902760807140.

    Article  PubMed  Google Scholar 

  80. Oh A, Duerden EG, Pang EW. The role of the insula in speech and language processing. Brain Lang. 2014;135:96–103. https://doi.org/10.1016/j.bandl.2014.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Belyk M, Brown S, Lim J, Kotz SA. Convergence of semantics and emotional expression within the IFG pars orbitalis. Neuroimage. 2017;156:240–8. https://doi.org/10.1016/j.neuroimage.2017.04.020.

    Article  PubMed  Google Scholar 

  82. Haaland KY, Harrington DL, Knight RT. Neural representations of skilled movement. Brain. 2000;123(Pt 11):2306–13. https://doi.org/10.1093/brain/123.11.2306.

    Article  PubMed  Google Scholar 

  83. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(Pt 3):564–83. https://doi.org/10.1093/brain/awl004.

    Article  PubMed  Google Scholar 

  84. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science. 2004;306(5695):443–7. https://doi.org/10.1126/science.1100301.

    Article  CAS  PubMed  Google Scholar 

  85. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci. 2011;12(3):154–67. https://doi.org/10.1038/nrn2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct Funct. 2019;224(9):3001–18. https://doi.org/10.1007/s00429-019-01945-2.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Watanabe K, Funahashi S. Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nat Neurosci. 2014;17(4):601–11. https://doi.org/10.1038/nn.3667.

    Article  CAS  PubMed  Google Scholar 

  88. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. 2004;305(5688):1258–64. https://doi.org/10.1126/science.1099901.

    Article  CAS  PubMed  Google Scholar 

  89. Ptak R, Valenza N. The inferior temporal lobe mediates distracter-resistant visual search of patients with spatial neglect. J Cogn Neurosci. 2005;17(5):788–99. https://doi.org/10.1162/0898929053747676.

    Article  PubMed  Google Scholar 

  90. van Kemenade BM, Arikan BE, Podranski K, Steinsträter O, Kircher T, Straube B. Distinct roles for the cerebellum, angular gyrus, and middle temporal gyrus in action-feedback monitoring. Cereb Cortex. 2019;29(4):1520–31. https://doi.org/10.1093/cercor/bhy048.

    Article  PubMed  Google Scholar 

  91. Xu J, Wang J, Fan L, Li H, Zhang W, Hu Q, et al. Tractography-based parcellation of the human middle temporal gyrus. Sci Rep. 2015;5:18883. https://doi.org/10.1038/srep18883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pehrs C, Zaki J, Schlochtermeier LH, Jacobs AM, Kuchinke L, Koelsch S. The temporal pole top-down modulates the ventral visual stream during social cognition. Cereb Cortex. 2017;27(1):777–92. https://doi.org/10.1093/cercor/bhv226.

    Article  PubMed  Google Scholar 

  93. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15. https://doi.org/10.1038/nrn755.

    Article  CAS  PubMed  Google Scholar 

  94. Habeck C, Stern Y. Neural network approaches and their reproducibility in the study of verbal working memory and Alzheimer’s disease. Clin Neurosci Res. 2007;6(6):381–90. https://doi.org/10.1016/j.cnr.2007.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I, et al. Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex. 2014;24(4):919–34. https://doi.org/10.1093/cercor/bhs379.

    Article  PubMed  Google Scholar 

  96. Kirilina E, Yu N, Jelzow A, Wabnitz H, Jacobs AM, Tachtsidis I. Identifying and quantifying main components of physiological noise in functional near infrared spectroscopy on the prefrontal cortex. Front Hum Neurosci. 2013;7:864. https://doi.org/10.3389/fnhum.2013.00864.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Erdoğan SB, Yücel MA, Akın A. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI. Neuroimage. 2014;87:490–504. https://doi.org/10.1016/j.neuroimage.2013.10.024.

    Article  PubMed  Google Scholar 

  98. Holtzer R, Izzetoglu M, Chen M, Wang C. Distinct fNIRS-derived HbO2 trajectories during the course and over repeated walking trials under single- and dual-task conditions: implications for within session learning and prefrontal cortex efficiency in older adults. J Gerontol A Biol Sci Med Sci. 2019;74(7):1076–83. https://doi.org/10.1093/gerona/gly181.

    Article  PubMed  Google Scholar 

  99. Al-Yahya E, Johansen-Berg H, Kischka U, Zarei M, Cockburn J, Dawes H. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study. Neurorehabil Neural Repair. 2016;30(6):591–9. https://doi.org/10.1177/1545968315613864.

    Article  PubMed  Google Scholar 

  100. Hernandez ME, Holtzer R, Chaparro G, Jean K, Balto JM, Sandroff BM, et al. Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. J Neurol Sci. 2016;370:277–83. https://doi.org/10.1016/j.jns.2016.10.002.

    Article  PubMed  Google Scholar 

  101. Sui J, Huster R, Yu Q, Segall JM, Calhoun VD. Function–structure associations of the brain: evidence from multimodal connectivity and covariance studies. Neuroimage. 2014;102(Pt 1):11–23. https://doi.org/10.1016/j.neuroimage.2013.09.044.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Health (R01AG036921, R01AG044007, R01NS109023).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.R., R.H. Methodology: D.R., M.E.W., M.I., R.H. Formal analysis: D.R. Writing—original draft preparation: D.R. Writing—review and editing: M.E.W., M.I., R.H. Funding acquisition: R.H.

Corresponding author

Correspondence to Roee Holtzer.

Ethics declarations

Ethics approval

All procedures performed in this study were in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments and approved by the institutional review board of Albert Einstein College of Medicine.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Conflicts of interest

M.I. has a very minor share in the company that manufactures the fNIRS device used in this study. All other authors declare no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, D., Wagshul, M.E., Izzetoglu, M. et al. Prefrontal cortex activation during dual-task walking in older adults is moderated by thickness of several cortical regions. GeroScience 43, 1959–1974 (2021). https://doi.org/10.1007/s11357-021-00379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00379-1

Keywords

Navigation