Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 22, 2021

Model reduction for Smoluchowski equations with particle transfer

  • Ivan Timokhin EMAIL logo , Sergey Matveev , Eugene Tyrtyshnikov and Alexander Smirnov

Abstract

In this paper we consider the problem of modelling a system of aggregating particles, that are being transported with stationary velocities dependent on masses of the particles in one-dimensional case. A numerical method based on the ideas of POD (Proper Orthogonal Decomposition) is constructed, and its capacity to speed up the solution up to 40 times is demonstrated.

MSC 2010: 65M22

Funding statement: The research was supported by Moscow Center for Fundamental and Applied Mathematics (agreement with the Ministry of Education and Science of the Russian Federation No. 075–15–2019–1624).

References

[1] V. I. Agoshkov and P. B. Dubovski, Solution of the reconstruction problem of a source function in the coagulation-fragmentation equation. Russ. J. Numer. Anal. Math. Modelling 17 (2002), No. 4, 319–330.10.1515/rnam-2002-0402Search in Google Scholar

[2] A. E. Aloyan and V. O. Arutyunyan and G. I. Marchuk, Dynamics of mesoscale boundary atmospheric layer and impurity spreading with the photochemical transformation allowed for. Russ. J. Numer. Anal. Math. Modelling 10 (1995), No. 2, 93–114.10.1515/rnam.1995.10.2.93Search in Google Scholar

[3] A. E. Aloyan, V. O. Arutyunyan, A. A. Lushnikov, and V. A. Zagaynov, Transport of coagulating aerosol in the atmosphere. J. Aerosol Science 28 (1997), No. 1, 67–85.10.1016/S0021-8502(96)00043-2Search in Google Scholar

[4] N. Brilliantov, P. L. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk, and J. Schmidt, Size distribution of particles in Saturn’s rings from aggregation and fragmentation. Proc. of the National Academy of Sciences 112 (2015), No. 31, 9536–9541.10.1073/pnas.1503957112Search in Google Scholar

[5] N. V. Brilliantov, W. Otieno, S. A. Matveev, A. P. Smirnov, E. E. Tyrtyshnikov, and P. L. Krapivsky, Steady oscillations in aggregation–fragmentation processes. Phys. Rev. E 98 (2018), No. 1, 012109.10.1103/PhysRevE.98.012109Search in Google Scholar

[6] V. A. Galkin, Smoluchowski Equation. Fizmatlit, Moscow, 2001 (in Russian).Search in Google Scholar

[7] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudoskeleton approximations. Linear Algebra and its Applications, 261 (1997), No. 1, 1–21.10.1016/S0024-3795(96)00301-1Search in Google Scholar

[8] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View of Statistical Physics. Cambridge University Press, 2010.10.1017/CBO9780511780516Search in Google Scholar

[9] S. A. Matveev, A. P. Smirnov, and E. E. Tyrtyshnikov, A fast numerical method for the Cauchy problem for the Smoluchowski equation. J. Comp. Phys. 282 (2015), No. FEB, 23–32.10.1016/j.jcp.2014.11.003Search in Google Scholar

[10] S. A. Matveev, P. L. Krapivsky, A. P. Smirnov, E. E. Tyrtyshnikov, and N. V. Brilliantov, Oscillations in aggregation-shattering processes. Phys. Rev. Lett. 119 (2017), No. 26, 260601.10.1103/PhysRevLett.119.260601Search in Google Scholar PubMed

[11] R. Pinnau, Model reduction via proper orthogonal decomposition. In: Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, Vol. 13 (Eds. W. H. A. Schilders, H. A. van der Vorst, and J. Rommes). Springer, Berlin–Heidelberg, 2008.10.1007/978-3-540-78841-6_5Search in Google Scholar

[12] M. V. Smoluchowski, Drei vortrage uber diffusion, Brownsche bewegung und koagulation von kolloidteilchen. Zeitschrift fur Physik 17 (1916), 557–585.Search in Google Scholar

[13] I. V. Timokhin, S. A. Matveev, N. Siddharth, E. E. Tyrtyshnikov, A. P. Smirnov, and N. V. Brilliantov, Newton method for stationary and quasi-stationary problems for Smoluchowski-type equations. J. Comp. Phys. 382 (2019), 124–137.10.1016/j.jcp.2019.01.013Search in Google Scholar

[14] R. R. Zagidullin, A. P. Smirnov, S. A. Matveev, and E. E. Tyrtyshnikov , An efficient numerical method for a mathematical model of a transport of coagulating particles. Moscow University Computational Mathematics and Cybernetics, 41 (2017), No. 4, 179–186.10.3103/S0278641917040082Search in Google Scholar

[15] R. Zagidullin, A. Smirnov, S. Matveev, and E. Tyrtyshnikov, Supercomputer modelling of spatially-heterogeneous coagulation using MPI and CUDA. In: Supercomputing (Eds. V. Voevodin and S. Sobolev). Springer International Publishing, Cham, 2019, pp. 403–414.10.1007/978-3-030-36592-9_33Search in Google Scholar

Received: 2021-02-27
Accepted: 2021-03-23
Published Online: 2021-06-22
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/rnam-2021-0015/html
Scroll to top button