Skip to main content
Log in

Low-frequency vibrations of water molecules in DNA minor groove

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Water molecules around the DNA form the hydration shell having different structural and dynamical features in different regions of the double helix. In the DNA minor groove, water molecules are highly ordered and in the case of AT nucleotide sequence, the formation of a hydration spine is observed. In the present research, the vibrations of the hydration spine have been studied to establish the mode of translational vibrations of water molecules in the DNA low-frequency spectra (water-spine vibrations). Using the developed phenomenological model with the parameters determined for different nucleotides of the DNA fragment CGCGAATTCGCG, the frequencies of vibrations of the hydration spine have been obtained within 185 ± 20 cm\(^{-1}\) depending on type of nucleotide. The obtained frequencies are in the same region as the translational vibrations of water molecules in the bulk. To select the mode of water-spine vibrations from those modes that are present in the bulk water, the dynamics of DNA with different nucleotide contents has been analyzed, and the possible influence of heavy water has been estimated. The determined features of the mode of water vibrations in the hydration spine of DNA minor groove indicate that this mode may be observed in the experimental spectra

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984).

  2. J.D. Watson, F.H. Crick, Nature 171(4356), 737 (1953)

    Article  ADS  Google Scholar 

  3. R.E. Franklin, R.G. Gosling, Acta Cryst. 6(8–9), 673 (1953)

  4. M.H. Wilkins, Science 140(3570), 941 (1963)

    Article  ADS  Google Scholar 

  5. Yu. P. Blagoi, V. L. Galkin, G. O. Gladchenko, S. V. Kornilova, V. A. Sorokin, A. G. Shkorbatov, The Complexes of Nucleic Acids and Metals in the Solutions (Naukova Dumka, Kiev, 1991)

  6. V. Maleev, M. Semenov, A. Gasan, V. Kashpur, Biofizika 38(5), 768 (1993)

    Google Scholar 

  7. G.S. Manning, J. Ray, J. Biomol. Struct. Dyn. 16(2), 461 (1998)

    Article  Google Scholar 

  8. E. Duboué-Dijon, A.C. Fogarty, J.T. Hynes, D. Laage, J. Am. Chem. Soc. 138(24), 7610 (2016)

    Article  Google Scholar 

  9. Y. Yonetani, H. Kono, Biophys. Chem. 160(1), 54 (2012)

    Article  Google Scholar 

  10. B. Jayaram, T. Jain, Annu. Rev. Biophys. Biomol. Struct. 33, 343 (2004)

    Article  Google Scholar 

  11. I. Haq, Arch. Biochem. Biophys. 403(1), 1 (2002)

    Article  MathSciNet  Google Scholar 

  12. M. Billeter, P. Güntert, P. Luginbühl, K. Wüthrich, Cell 85(7), 1057 (1996)

    Article  Google Scholar 

  13. N. Tao, S. Lindsay, A. Rupprecht, Biopolymers 28(5), 1019 (1989)

    Article  Google Scholar 

  14. N. Lavalle, S. Lee, A. Rupprecht, Biopolymers 30(9–10), 877 (1990)

    Article  Google Scholar 

  15. H.R. Drew, R.E. Dickerson, J. Mol. Biol. 151(3), 535 (1981)

    Article  Google Scholar 

  16. V. Tereshko, G. Minasov, M. Egli, J. Am. Chem. Soc. 121(15), 3590 (1999)

    Article  Google Scholar 

  17. M.G. Kubinec, D.E. Wemmer, J. Am. Chem. Soc. 114(22), 8739 (1992)

    Article  Google Scholar 

  18. E. Liepinsh, G. Otting, K. Wüthrich, Nucleic Acids Res. 20(24), 6549 (1992)

    Article  Google Scholar 

  19. M.L. McDermott, H. Vanselous, S.A. Corcelli, P.B. Petersen, ACS Cent. Sci. 3(7), 708 (2017)

    Article  Google Scholar 

  20. V. Chuprina, U. Heinemann, A. Nurislamov, P. Zielenkiewicz, R. Dickerson, W. Saenger, Proc. Natl. Acad. Sci. USA 88(2), 593 (1991)

  21. Y. Duan, P. Wilkosz, M. Crowley, J.M. Rosenberg, J. Mol. Biol. 272(4), 553 (1997)

    Article  Google Scholar 

  22. T. Siebert, B. Guchhait, Y. Liu, R. Costard, T. Elsaesser, J. Phys. Chem. B 119(30), 9670 (2015)

    Article  Google Scholar 

  23. D. Floisand, S. Corcelli, J. Phys. Chem. Lett. 6(20), 4012 (2015)

    Article  Google Scholar 

  24. V.P. Denisov, G. Carlström, K. Venu, B. Halle, J. Mol. Biol. 268(1), 118 (1997)

    Article  Google Scholar 

  25. A.T. Phan, J.L. Leroy, M. Guéron, J. Mol. Biol. 286(2), 505 (1999)

    Article  Google Scholar 

  26. D. Saha, S. Supekar, A. Mukherjee, J. Phys. Chem. B 119(34), 11371 (2015)

    Article  Google Scholar 

  27. S. Pal, P.K. Maiti, B. Bagchi, J. Chem. Phys. 125(23), 234903 (2006)

    Article  ADS  Google Scholar 

  28. G. Walrafen, J. Chem. Phys. 40(11), 3249 (1964)

    Article  ADS  Google Scholar 

  29. G. Walrafen, J. Phys. Chem. 94(6), 2237 (1990)

    Article  Google Scholar 

  30. G. Walrafen, Y. Chu, G. Piermarini, J. Phys. Chem. 100(24), 10363 (1996)

    Article  Google Scholar 

  31. M. Galvin, D. Zerulla, ChemPhysChem 12(5), 913 (2011)

    Article  Google Scholar 

  32. D.A. Draegert, N. Stone, B. Curnutte, D. Williams, J. Opt. Soc. Am. 56(1), 64 (1966)

    Article  ADS  Google Scholar 

  33. J. Vij, D. Simpson, O. Panarina, J. Mol. Liq. 112(3), 125 (2004)

    Article  Google Scholar 

  34. Y. Maréchal, J. Mol. Struct. 1004(1–3), 146 (2011)

    Article  ADS  Google Scholar 

  35. G. Safford, P. Leung, A. Naumann, P. Schaffer, J. Chem. Phys. 50(10), 4444 (1969)

    Article  ADS  Google Scholar 

  36. V. Gaiduk, J. Vij, Phys. Chem. Chem. Phys. 3(23), 5173 (2001)

    Article  Google Scholar 

  37. I. Ohmine, S. Saito, Acc. Chem. Res. 32(9), 741 (1999)

    Article  Google Scholar 

  38. M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, D. Marx, Proc. Natl. Acad. Sci. USA 107(27), 12068 (2010)

    Article  ADS  Google Scholar 

  39. S. Carlson, F.N. Brunig, P. Loche, D.J. Bonthuis, R.R. Netz, J. Phys. Chem. A 124(27), 5599 (2020)

  40. O.P. Lamba, A.J. Wang, G.J. Thomas Jr., Biopolymers 28(2), 667 (1989)

    Article  Google Scholar 

  41. T. Weidlich, S. Lindsay, Q. Rui, A. Rupprecht, W. Peticolas, G. Thomas, J. Biomol. Struct. Dyn. 8(1), 139 (1990)

    Article  Google Scholar 

  42. H. Urabe, Y. Tominaga, J. Phys. Soc. Jpn. 50(11), 3543 (1981)

    Article  ADS  Google Scholar 

  43. H. Urabe, H. Hayashi, Y. Tominaga, Y. Nishimura, K. Kubota, M. Tsuboi, J. Chem. Phys. 82(1), 531 (1985)

    Article  ADS  Google Scholar 

  44. J. Powell, G. Edwards, L. Genzel, F. Kremer, A. Wittlin, W. Kubasek, W. Peticolas, Phys. Rev. A 35(9), 3929 (1987)

    Article  ADS  Google Scholar 

  45. T. Weidlich, J. Powell, L. Genzel, A. Rupprecht, Biopolymers 30(3–4), 477 (1990)

    Article  Google Scholar 

  46. L. Young, V. Prabhu, E. Prohofsky, Phys. Rev. A 39(6), 3173 (1989)

    Article  ADS  Google Scholar 

  47. S. Volkov, A. Kosevich, Mol. Biol. 21(3), 797 (1987)

    Google Scholar 

  48. S. Volkov, A. Kosevich, J. Biomol. Struct. Dyn. 8(5), 1069 (1991)

    Article  Google Scholar 

  49. A. Matsumoto, N. Go, J. Chem. Phys. 110(22), 11070 (1999)

    Article  ADS  Google Scholar 

  50. S. Cocco, R. Monasson, J. Chem. Phys. 112(22), 10017 (2000)

    Article  ADS  Google Scholar 

  51. T. Weidlich, S. Lindsay, A. Rupprecht, Phys. Rev. Lett. 61(14), 1674 (1988)

  52. S. Perepelytsya, S. Volkov, Ukr. J. Phys. 49(11), 1072 (2004)

    Google Scholar 

  53. S. Perepelytsya, S. Volkov, Eur. Phys. J. E 24(3), 261 (2007)

    Article  Google Scholar 

  54. S. Perepelytsya, S. Volkov, Ukr. J. Phys. 55(11), 1182 (2010)

    Google Scholar 

  55. S. Perepelytsya, S. Volkov, J. Phys: Conf. Ser. 438(1), 012013 (2013)

    Google Scholar 

  56. S. Perepelytsya, J. Mol. Model. 24(7), 171 (2018)

    Article  Google Scholar 

  57. A. Anselm, Introduction to semiconductor theory (Mir Publishers, 1981)

  58. D. Chandler, Introduction to modern statistical mechanics (Oxford University Press, Oxford, UK, 1987)

    Google Scholar 

  59. B.G. Levine, J.E. Stone, A. Kohlmeyer, J. Comput. Phys. 230(9), 3556 (2011)

    Article  ADS  Google Scholar 

  60. W. Humphrey, A. Dalke, K. Schulten et al., J. Mol. Graph. 14(1), 33 (1996)

    Article  Google Scholar 

  61. H. Urabe, Y. Sugawara, M. Tsukakoshi, T. Kasuya, J. Chem. Phys. 95(8), 5519 (1991)

    Article  ADS  Google Scholar 

  62. K. Woods, S. Lee, H.Y. Holman, H. Wiedemann, J. Chem. Phys. 124(22), 224706 (2006)

    Article  ADS  Google Scholar 

  63. S. Arai, T. Chatake, T. Ohhara, K. Kurihara, I. Tanaka, N. Suzuki, Z. Fujimoto, H. Mizuno, N. Niimura, Nucleic Acids Res. 33(9), 3017 (2005)

    Article  Google Scholar 

  64. T. Chatake, I. Tanaka, H. Umino, S. Arai, N. Niimura, Acta Cryst. 61(8), 1088 (2005)

    Google Scholar 

  65. F. Franks, The physics and physical chemistry of water, vol. 1 (Springer, Berlin, 2012)

    Google Scholar 

  66. B. Canard, S.T. Cole, Proc. Natl. Acad. Sci. USA 86(17), 6676 (1989)

    Article  ADS  Google Scholar 

  67. J. Marmur, P. Doty, J. Mol. Biol. 5(1), 109 (1962)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was partially supported by the Project of the National Academy of Sciences of Ukraine (0120U100855).

Author information

Authors and Affiliations

Authors

Contributions

TLB performed the analytical analysis and computations. SMP supervised the research. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to T. L. Bubon.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3159 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubon, T.L., Perepelytsya, S.M. Low-frequency vibrations of water molecules in DNA minor groove. Eur. Phys. J. E 44, 84 (2021). https://doi.org/10.1140/epje/s10189-021-00080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00080-3

Navigation