Skip to main content
Log in

Newly discovered \(\Xi _c^{0}\) resonances and their parameters

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The aim of the present article is investigation of the newly observed resonances \(\Xi _c(2923)^{0}\), \(\Xi _c(2939)^{0}\), and \(\Xi _c(2965)^{0}\) which are real candidates to charm-strange baryons. To this end, we calculate the mass and pole residue of the ground-state and excited 1P and 2S spin-1/2 flavor-sextet baryons \(\Xi _{c}^{\prime 0}\), \(\Xi _{c}^{\prime 0}(1/2^{-})\) and \(\Xi _{c}^{\prime 0}(1/2^{+})\) with quark content csd, respectively. The masses and pole residues of the ground-state and excited spin-3/2 baryons \(\Xi _{c}^{\star 0}\) are found as well. Spectroscopic parameters of these particles are computed in the context of the QCD two-point sum rule method. Widths of the excited baryons are evaluated through their decays to final states \(\Lambda _{c}^{+}K^{-}\) and \( \Xi _{c}^{\prime 0}\pi \). These processes are explored by means of the full QCD light-cone sum rule method necessary to determine strong couplings at relevant vertices. Obtained predictions for the masses and widths of the four excited baryons, as well as previous results for 1P and 2S flavor-antitriplet spin-1/2 particles \(\Xi _c^{0}\) are confronted with available experimental data on \(\Xi _{c}^{0}\) resonances to fix their quantum numbers. Our comparison demonstrates that the resonances \(\Xi _c(2923)^{0}\) and \(\Xi _c(2939)^{0}\) can be considered as 1P excitations of the spin-1/2 flavor-sextet and spin-3/2 baryons, respectively. The resonance \(\Xi _{c}(2965)^{0}\) may be interpreted as the excited 2S state of either spin-1/2 flavor-sextet or antitriplet baryon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the numerical and mathematical data have been included in the paper and we have no other data regarding this paper.]

References

  1. R. Aaij et al., [LHCb Collaboration]. Phys. Rev. Lett. 124, 222001 (2020)

  2. R. Aaij et al., [LHCb Collaboration]. Phys. Rev. Lett. 118, 182001 (2017)

  3. R. Aaij et al., [LHCb Collaboration]. Phys. Rev. Lett. 124, 082002 (2020)

  4. S.S. Agaev, K. Azizi, H. Sundu, EPL 118, 61001 (2017)

    Article  ADS  Google Scholar 

  5. S.S. Agaev, K. Azizi, H. Sundu, Eur. Phys. J. C 77, 395 (2017)

    Article  ADS  Google Scholar 

  6. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 96, 094011 (2017)

    Article  ADS  Google Scholar 

  7. M. Tanabashi et al., [Particle Data Group]. Phys. Rev. D 98, 030001 (2018)

  8. S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)

    Article  ADS  Google Scholar 

  9. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Lett. B 659, 612 (2008)

    Article  ADS  Google Scholar 

  10. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 84, 014025 (2011)

    Article  ADS  Google Scholar 

  11. H. Garcilazo, J. Vijande, A. Valcarce, J. Phys. G 34, 961 (2007)

    Article  Google Scholar 

  12. A. Valcarce, H. Garcilazo, J. Vijande, Eur. Phys. J. A 37, 217 (2008)

    Article  ADS  Google Scholar 

  13. W. Roberts, M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008)

    Article  ADS  Google Scholar 

  14. T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D 92, 114029 (2015)

    Article  ADS  Google Scholar 

  15. Z. Shah, K. Thakkar, A.K. Rai, P.C. Vinodkumar, Chin. Phys. C 40, 123102 (2016)

    Article  ADS  Google Scholar 

  16. E. Bagan, M. Chabab, H.G. Dosch, S. Narison, Phys. Lett. B 287, 176 (1992)

    Article  ADS  Google Scholar 

  17. C .S. Huang, A l Zhang, S .L. Zhu, Phys. Lett. B 492, 288 (2000)

    Article  ADS  Google Scholar 

  18. D.W. Wang, M.Q. Huang, C.Z. Li, Phys. Rev. D 65, 094036 (2002)

    Article  ADS  Google Scholar 

  19. Z.G. Wang, Phys. Lett. B 685, 59 (2010)

    Article  ADS  Google Scholar 

  20. H.X. Chen, W. Chen, Q. Mao, A. Hosaka, X. Liu, S.L. Zhu, Phys. Rev. D 91, 054034 (2015)

    Article  ADS  Google Scholar 

  21. H.X. Chen, Q. Mao, A. Hosaka, X. Liu, S.L. Zhu, Phys. Rev. D 94, 114016 (2016)

    Article  ADS  Google Scholar 

  22. H.X. Chen, Q. Mao, W. Chen, A. Hosaka, X. Liu, S.L. Zhu, Phys. Rev. D 95, 094008 (2017)

    Article  ADS  Google Scholar 

  23. T.M. Aliev, K. Azizi, M. Savci, Phys. Lett. B 696, 220 (2011)

    Article  ADS  Google Scholar 

  24. T.M. Aliev, K. Azizi, M. Savci, Eur. Phys. J. C 71, 1675 (2011)

    Article  ADS  Google Scholar 

  25. T.M. Aliev, K. Azizi, M. Savci, Nucl. Phys. A 870–871, 58 (2011)

    Article  ADS  Google Scholar 

  26. K. Azizi, H. Sundu, Eur. Phys. J. Plus 132, 22 (2017)

    Article  Google Scholar 

  27. G. Chiladze, A.F. Falk, Phys. Rev. D 56, R6738 (1997)

    Article  ADS  Google Scholar 

  28. R.G. Edwards et al., Phys. Rev. D 87, 054506 (2013)

    Article  ADS  Google Scholar 

  29. M. Padmanath, R.G. Edwards, N. Mathur, M. Peardon, arXiv:1311.4806 [hep-lat]

  30. H. Bahtiyar, K.U. Can, G. Erkol, P. Gubler, M. Oka, T.T. Takahashi, Phys. Rev. D 102, 054513 (2020)

    Article  ADS  Google Scholar 

  31. B. Aubert et al., [BaBar Collaboration]. Phys. Rev. D 77, 031101 (2008)

  32. Y .B. Li et al., [Belle Collaboration]. Eur. Phys. J. C 78, 252 (2018)

  33. L.H. Liu, L.Y. Xiao, X.H. Zhong, Phys. Rev. D 86, 034024 (2012)

    Article  ADS  Google Scholar 

  34. K .L. Wang, Y .X. Yao, X .H. Zhong, Q. Zhao, Phys. Rev. D 96, 116016 (2017)

    Article  ADS  Google Scholar 

  35. B. Chen, K .W. Wei, X. Liu, T. Matsuki, Eur. Phys. J. C 77, 154 (2017)

    Article  ADS  Google Scholar 

  36. D.D. Ye, Z. Zhao, A. Zhang, Phys. Rev. D 96, 114003 (2017)

    Article  ADS  Google Scholar 

  37. D.D. Ye, Z. Zhao, A. Zhang, Phys. Rev. D 96, 114009 (2017)

    Article  ADS  Google Scholar 

  38. T.M. Aliev, K. Azizi, H. Sundu, Eur. Phys. J. A 54, 159 (2018)

    Article  ADS  Google Scholar 

  39. H.M. Yang, H.X. Chen, Q. Mao, Phys. Rev. D 102, 114009 (2020)

    Article  ADS  Google Scholar 

  40. K.L. Wang, L.Y. Xiao, X.H. Zhong, Phys. Rev. D 102, 034029 (2020)

    Article  ADS  Google Scholar 

  41. Q.F. Lu, arXiv:2004.02374 [hep-ph]

  42. H. Zhu, N. Ma, Y. Huang, arXiv:2005.02642 [hep-ph]

  43. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  44. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979)

    Article  ADS  Google Scholar 

  45. I.I. Balitsky, V.M. Braun, A.V. Kolesnichenko, Nucl. Phys. B 312, 509 (1989)

    Article  ADS  Google Scholar 

  46. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93, 114036 (2016)

    Article  ADS  Google Scholar 

  47. K. Azizi, A.R. Olamaei, S. Rostami, Eur. Phys. J. A 54, 162 (2018)

    Article  ADS  Google Scholar 

  48. V.M. Belyaev, V.M. Braun, A. Khodjamirian, R. Ruckl, Phys. Rev. D 51, 6177 (1995)

    Article  ADS  Google Scholar 

  49. P. Ball, V.M. Braun, A. Lenz, JHEP 0605, 004 (2006)

    Article  ADS  Google Scholar 

  50. V.M. Braun, I.E. Filyanov, Z. Phys, C 44, 157 (1989)

    Google Scholar 

  51. V.M. Braun, I.E. Filyanov, Z. Phys, C 48, 239 (1990)

    Google Scholar 

  52. P. Ball, JHEP 9901, 010 (1999)

    Article  ADS  Google Scholar 

  53. J. Yelton et al., [The Belle Collaboration]. Phys. Rev. D 94, 052011 (2016)

  54. T.J. Moon et al. [The Belle Collaboration], arXiv:2007.14700

  55. A.J. Arifi, H. Nagahiro, A. Hosaka, K. Tanida, Phys. Rev. D 101, 111502 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. S. A. is grateful to Prof. V. M. Braun for enlightening comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Azizi.

Additional information

Communicated by Eulogio Oset

Appendix: The invariant amplitudes \(\Pi _{1}^{\mathrm {OPE}}(M^{2},s_{0})\) and \(\Pi _{2}^{\mathrm {OPE}}(M^{2},s_{0})\)

Appendix: The invariant amplitudes \(\Pi _{1}^{\mathrm {OPE}}(M^{2},s_{0})\) and \(\Pi _{2}^{\mathrm {OPE}}(M^{2},s_{0})\)

The invariant amplitudes \(\Pi _{1(2)}^{\mathrm {OPE}}(p^{2})\) used to calculate the mass and pole residue of the flavor-sextet spin-1/2 baryons after the Borel transformation and subtraction prescriptions take the following form

$$\begin{aligned} \Pi _{1(2)}^{\mathrm {OPE}}(M^{2},s_{0})=\int _{\mathcal {M}^{2}}^{s_{0}}ds\rho _{1(2)}^{\mathrm {OPE}}(s)e^{-s/M^{2}}+\Pi _{1(2)}(M^{2}), \end{aligned}$$
(A.1)

where \(\mathcal {M}=m_{c}+m_{s}\). The spectral densities \(\rho _{1(2)}^{ \mathrm {OPE}}(s)\) in Eq. (A.1) are found from the imaginary part of the correlation function and encompass essential piece of \(\Pi ^{\mathrm {OPE} }(p)\). The Borel transformations of remaining terms in \(\Pi ^{\mathrm {OPE} }(p)\) are included into \(\Pi _{1(2)}(M^{2})\), and have been calculated directly from the expression of \(\Pi ^{\mathrm {OPE}}(p)\).

The functions \(\rho _{1(2)}^{\mathrm {OPE}}(s)\) and \(\Pi _{1(2)}(M^{2})\) contain components of different dimensions and have the structure

$$\begin{aligned} \rho _{1(2)}^{\mathrm {OPE}}(s)= & {} \rho _{1(2)}^{\mathrm {pert.}}(s)+\sum \rho _{1(2)}^{\mathrm {DimN}}(s),\nonumber \\ \Pi _{1(2)}(M^{2})= & {} \sum \Pi _{1(2)}^{\mathrm { DimN}}(M^{2}). \end{aligned}$$
(A.2)

The \(\Pi _{1(2)}^{\mathrm {OPE}}(M^{2},s_{0})\) have been computed by setting \( m_{q}=0\) and \(m_{s}\ne 0\), and used to perform numerical analyses. The amplitudes \(\Pi _{1(2)}^{\mathrm {OPE}}(M^{2},s_{0})\), in general, contain a few hundred terms and exist as Mathematica files. Their explicit expressions are cumbersome, therefore we provide below simplified formulas in which \(m_{s}=0\).

The perturbative contribution and nonperturbative terms with dimensions 3, 4, 5 and 7 in the case of the spectral density \(\rho _{1}^{\mathrm {OPE} }(s)\) are given by the expressions:

$$\begin{aligned} \rho _{1}^{\mathrm {pert.}}(s)= & {} \frac{(5+2\beta +5\beta ^{2})}{2048\pi ^{4}s^{2}}\left[ m_{c}^{6}(8s-m_{c}^{2})+s^{3}(s-8m_{c}^{2})+12m_{c}^{4}s^{2}\ln \left( \frac{ s}{m_{c}^{2}}\right) \right] ,\\ \rho _{1}^{\mathrm {Dim3}}(s)= & {} \frac{\langle \overline{s}s\rangle +\langle \overline{d}d\rangle }{192\pi ^{2}s^{2}}m_{c}\left( m_{c}^{2}-s\right) ^{2}\left( 1+4\beta -5\beta ^{2}\right) ,\\ \rho _{1}^{\mathrm {Dim4}}(s)= & {} \frac{\langle g_{s}^{2}G^{2}\rangle }{3072\pi ^{4}s^{2}}\left( s-m_{c}^{2}\right) \left[ 8m_{c}^{2}\left( 1+\beta +\beta ^{2}\right) +s\left( 5+2\beta +5\beta ^{2}\right) \right] ,\\ \rho _{1}^{\mathrm {Dim5}}(s)= & {} \frac{\langle \overline{d}g_{s}\sigma Gd\rangle +\langle \overline{s}g_{s}\sigma Gs\rangle }{768\pi ^{2}s^{2}}m_{c}(\beta -1) \left[ m_{c}^{2}(7+11\beta )-6s(1+\beta )\right] ,\\ \rho _{1}^{\mathrm {Dim7}}(s)= & {} \frac{\langle g_{s}^{2}G^{2}\rangle \left[ \langle \overline{s}s\rangle +\langle \overline{d}d\rangle \right] }{384\pi ^{2}s^{2}}m_{c}(1-\beta ^{2}). \end{aligned}$$

The function \(\Pi _{1}(M^{2})\) is composed of the following components:

$$\begin{aligned} \Pi _{1}^{\mathrm {Dim6}}(M^{2},s_{0})= & {} \frac{\langle \overline{s}s\rangle \langle \overline{d}d\rangle }{72}\left( 11\beta ^{2}+2\beta -13\right) e^{-m_{c}^{2}/M^{2}},\\ \Pi _{1}^{\mathrm {Dim7}}(M^{2},s_{0})= & {} \frac{\langle g_{s}^{2}G^{2}\rangle \left[ \langle \overline{s}s\rangle +\langle \overline{d}d\rangle \right] }{ 864\pi ^{2}m_{c}}\left( \beta ^{2}+\beta -2\right) e^{-m_{c}^{2}/M^{2}},\\ \Pi _{1}^{\mathrm {Dim8}}(M^{2},s_{0})= & {} -\frac{\langle g_{s}^{2}G^{2}\rangle ^{2}}{27\cdot 2^{13}\pi ^{4}M^{2}}\left( 13\beta ^{2}+10\beta +13\right) e^{-m_{c}^{2}/M^{2}}\\&+\frac{\langle \overline{s}g_{s}\sigma Gs\rangle \langle \overline{d}d\rangle }{288M^{4}}(1-\beta ) \\&\times \left[ m_{c}^{2}(26+22\beta )+M^{2}\left( 25+23\beta \right) \right] e^{-m_{c}^{2}/M^{2}},\\ \Pi _{1}^{\mathrm {Dim9}}(M^{2},s_{0})= & {} \frac{\langle \overline{s} g_{s}\sigma Gs\rangle \langle g_{s}^{2}G^{2}\rangle }{27\cdot 2^{11}\pi ^{2}m_{c}M^{4}}(1-\beta )\\&\times \left[ m_{c}^{2}(31+11\beta )-2M^{2}(1+\beta ) \right] e^{-m_{c}^{2}/M^{2}}, \\ \Pi _{1}^{\mathrm {Dim10}}(M^{2},s_{0})= & {} 0. \end{aligned}$$

For the spectral density \(\rho _{2}^{\mathrm {OPE}}(s)\), we get

$$\begin{aligned} \rho _{2}^{\mathrm {pert.}}(s)= & {} \frac{m_{c}(13-2\beta -11\beta ^{2})}{1536\pi ^{4}s}\\&\times \left[ m_{c}^{6}+9sm_{c}^{4}-9m_{c}^{2}s^{2}-s^{3}+6m_{c}^{2}s(s+m_{c}^{2})\ln \left( \frac{s}{m_{c}^{2}}\right) \right] ,\\ \rho _{2}^{\mathrm {Dim3}}(s)= & {} \frac{\langle \overline{s}s\rangle +\langle \overline{d}d\rangle }{192\pi ^{2}s}\left( m_{c}^{2}-s\right) ^{2}\left( 1+4\beta -5\beta ^{2}\right) ,\\ \rho _{2}^{\mathrm {Dim4}}(s)= & {} \frac{\langle g_{s}^{2}G^{2}\rangle }{9216\pi ^{4}m_{c}s}\left( 1-\beta \right) \\&\times \left[ (m_{c}^{2}-s)\left( s(13+11\beta )+m_{c}^{2}(53+67\beta )\right) \right. \\&\left. +3m_{c}^{2}s(11+13\beta )\ln \left( \frac{s}{m_{c}^{2}}\right) \right] ,\\ \rho _{2}^{\mathrm {Dim5}}(s)= & {} \frac{\langle \overline{d}g_{s}\sigma Gd\rangle +\langle \overline{s}g_{s}\sigma Gs\rangle }{768\pi ^{2}s}(1-\beta )\\&\times \left[ m_{c}^{2}(5+\beta )-6s(1+\beta )\right] . \end{aligned}$$

The function \(\Pi _{2}(M^{2})\) is determined by the components

$$\begin{aligned} \Pi _{2}^{\mathrm {Dim6}}(M^{2},s_{0})= & {} \frac{\langle \overline{s}s\rangle \langle \overline{d}d\rangle }{24}m_{c}\left( 5\beta ^{2}+2\beta +5\right) e^{-m_{c}^{2}/M^{2}},\\ \Pi _{2}^{\mathrm {Dim7}}(M^{2},s_{0})= & {} \frac{\langle g_{s}^{2}G^{2}\rangle \left[ \langle \overline{s}s\rangle +\langle \overline{d}d\rangle \right] }{ 3456\pi ^{2}}\left( \beta ^{2}-8\beta +7\right) e^{-m_{c}^{2}/M^{2}},\\ \Pi _{2}^{\mathrm {Dim8}}(M^{2},s_{0})= & {} \frac{\langle g_{s}^{2}G^{2}\rangle ^{2}}{27\cdot 2^{13}\pi ^{4}m_{c}M^{2}}(m_{c}^{2}-2M^{2})\left( 11+2\beta -13\beta ^{2}\right) e^{-m_{c}^{2}/M^{2}}\\&+\frac{\langle \overline{s} g_{s}\sigma Gs\rangle \langle \overline{d}d\rangle }{144M^{4}}m_{c} \\&\times \left[ M^{2}\left( \beta -1\right) ^{2}-3m_{c}^{2}(5+2\beta +5\beta ^{2})\right] e^{-m_{c}^{2}/M^{2}},\\ \Pi _{2}^{\mathrm {Dim9}}(M^{2},s_{0})= & {} \frac{\langle \overline{s} g_{s}\sigma Gs\rangle \langle g_{s}^{2}G^{2}\rangle }{27\cdot 2^{11}\pi ^{2}M^{4}}m_{c}^{2}(\beta ^{2}+28\beta -29)e^{-m_{c}^{2}/M^{2}}, \\ \Pi _{2}^{\mathrm {Dim10}}(M^{2},s_{0})= & {} 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agaev, S.S., Azizi, K. & Sundu, H. Newly discovered \(\Xi _c^{0}\) resonances and their parameters. Eur. Phys. J. A 57, 201 (2021). https://doi.org/10.1140/epja/s10050-021-00523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00523-7

Navigation