Skip to main content
Log in

A high-performance approach to detecting small targets in long-range low-quality infrared videos

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Since targets are small in long-range infrared (IR) videos, it is challenging to accurately detect targets in those videos. In this paper, we propose a high-performance approach to detecting small targets in long-range and low-quality infrared videos. Our approach consists of a video resolution enhancement module, a proven small target detector based on local intensity and gradient (LIG), a connected component (CC) analysis module, and a track association module known as Simple Online and Real-time Tracking (SORT) to connect detections from multiple frames. Extensive experiments using actual mid-wave infrared (MWIR) videos in range between 3500 and 5000 m from a benchmark dataset clearly demonstrated the efficacy of the proposed approach. In the 5000 m case, the F1 score has been improved from 0.936 without SORT to 0.977 with SORT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. Chen, C.L.P., Li, H., Wei, Y., Xia, T., Tang, Y.Y.: A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 52(1), 574–581 (2014)

    Article  Google Scholar 

  2. Wei, Y., You, X., Li, H.: Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 58, 216–226 (2016)

    Article  Google Scholar 

  3. Gao, C., Meng, D., Yang, Y., Wang, Y., Zhou, X., Hauptmann, A.G.: Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 22(12), 4996–5009 (2013)

    Article  MathSciNet  Google Scholar 

  4. Zhang, L., Peng, L., Zhang, T., Cao, S., Peng, Z.: Infrared small target detection via non-convex rank approximation minimization joint l2,1 norm. Remote Sens. 10(11), 1–26 (2018)

    Article  Google Scholar 

  5. Zhang, H., Zhang, L., Yuan, D., Chen, H.: Infrared small target detection based on local intensity and gradient properties. Infrared Phys. Technol. 89, 88–96 (2018)

    Article  Google Scholar 

  6. Chen, Y., Zhang, G., Ma, Y., Kang, J. U., Kwan, C.: Small infrared target detection based on fast adaptive masking and scaling with iterative segmentation. IEEE Geosci. Remote Sens. Lett. (2020).

  7. Kwan, C., Chou, B., Kwan, L. M.: A comparative study of conventional and deep learning target tracking algorithms for low quality videos. In: Proceedings of the 15th International Symposium on Neural Networks (2018)

  8. Kwan, C., Budavari, B.: Enhancing small target detection performance in low quality and long range infrared videos using optical flow techniques. Remote Sens. 12(24), 4024 (2020)

    Article  Google Scholar 

  9. Demir, H. S., Cetin, A. E.: Co-difference based object tracking algorithm for infrared videos. In: IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, pp. 434–438. (2016)

  10. Kwan, C., Chou, B., Yang, J., Tran, T.: Compressive object tracking and classification using deep learning for infrared videos. In: Proceedings of the SPIE 10995, Pattern Recognition and Tracking (Conference SI120) (2019)

  11. Kwan, C., Chou, B., Yang, J., Tran, T.: Target tracking and classification directly in compressive measurement for low quality videos. In: SPIE 10995, Pattern Recognition and Tracking XXX, 1099505 (2019)

  12. Kwan, C., Chou, B., Echavarren, A., Budavari, B., Li, J., Tran, T.: Compressive vehicle tracking using deep learning. IEEE Ubiquitous Computing, Electronics and Mobile Communication Conference, New York City. (2018)

  13. Kwan, C., Gribben, D., Tran, T.: Multiple human objects tracking and classification directly in compressive measurement domain for long range infrared videos. In: IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference, New York City. (2019)

  14. Kwan, C., Gribben, D., Tran, T.: Tracking and classification of multiple human objects directly in compressive measurement domain for low quality optical videos. In: IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference. New York City (2019)

  15. Kwan, C., Chou, B., Yang, J., Tran, T.: Deep learning based target tracking and classification directly in compressive measurement for low quality videos. Signal Image Process. Int. J. (SIPIJ). (2019)

  16. Kwan, C., Chou, B., Yang, J., Rangamani, A., Tran, T., Zhang, J., Etienne-Cummings, R.: Target tracking and classification directly using compressive sensing camera for SWIR videos. J. Signal Image Video Process. 13, 1629–1637 (2019)

    Article  Google Scholar 

  17. Kwan, C., Chou, B., Yang, J., Rangamani, A., Tran, T., Zhang, J., Etienne-Cummings, R.: Target tracking and classification using compressive measurements of MWIR and LWIR coded aperture cameras. J. Signal Information Processing. 10, 73–95 (2019)

    Article  Google Scholar 

  18. Kwan, C., Gribben, D., Rangamani, A., Tran, T., Zhang, J., Etienne-Cummings, R.: Detection and confirmation of multiple human targets using pixel-wise code aperture measurements. J. Imag. 6(6), 40 (2020)

    Article  Google Scholar 

  19. Kwan, C., Chou, B., Yang, J., Tran, T.: Deep learning based target tracking and classification for infrared videos using compressive measurements. J. Signal Inform. Process. (2019)

  20. Kwan, C., Chou, B., Yang, J., Rangamani, A., Tran, T., Zhang, J., Etienne-Cummings, R.: Deep learning based target tracking and classification for low quality videos using coded aperture camera. Sensors 19(17), 3702 (2019)

    Article  Google Scholar 

  21. Lohit, S., Kulkarni, K., Turaga, P. K.: Direct inference on compressive measurements using convolutional neural networks. Int. Conf. Image Process. 1913–1917. (2016)

  22. Adler, A., Elad, M., Zibulevsky, M.: Compressed learning: a deep neural network approach. (2016)

  23. Xu, Y., Kelly, K. F.: Compressed domain image classification using a multi-rate neural network. (2019)

  24. Wang, Z. W., Vineet, V., Pittaluga, F., Sinha, S. N., Cossairt, O., Kang, S. B.: Privacy-preserving action recognition using coded aperture videos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. (2019)

  25. Vargas, H., Fonseca, Y., Arguello, H.: Object detection on compressive measurements using correlation filters and sparse representation. In: Proceedings of the 26th European Signal Processing Conference (EUSIPCO). Pp. 1960–1964. (2018)

  26. Değerli, A., Aslan, S., Yamac, M., Sankur, B., Gabbouj, M.: Compressively sensed image recognition. In: Proceedings of the 7th European Workshop on Visual Information Processing (EUVIP), Tampere. (2018)

  27. Latorre-Carmona, P., Traver, V. J., Sánchez, J. S., Tajahuerce, E.: Online reconstruction-free single-pixel image classification. Image Vis. Comput. (2018)

  28. Kwan, C., Gribben, D., Chou, B., Budavari, B., Larkin, J., Rangamani, A., Tran, T., Zhang, J., Etienne-Cummings, R.: Real-time and deep learning based vehicle detection and classification using pixel-wise code exposure measurements. Electronics, (2020)

  29. Jo, Y., Oh, S. W., Kang, J., Kim, S. J.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and #pattern recognition (pp. 3224–3232). (2018)

  30. Xiang, X.: Mukosame/Zooming-Slow-Mo-CVPR-2020. GitHub, 2020, github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020

  31. Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J. P., Xu, C.: zooming slow-mo: fast and accurate one-stage space-time video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3370–3379). (2020)

  32. Kwan, C., Budavari, B.: Enhancing small moving target detection performance in low-quality and long-range infrared videos using optical flow techniques. Remote Sens. 12(24), 4024 (2020)

    Article  Google Scholar 

  33. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking.

  34. SENSIAC dataset, https://www.news.gatech.edu/2006/03/06/sensiac-center-helps-advance-military-sensing. Accessed 9 Nov 2020.

Download references

Acknowledgements

This work was partially supported by US government PPP program. The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiman Kwan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwan, C., Budavari, B. A high-performance approach to detecting small targets in long-range low-quality infrared videos. SIViP 16, 93–101 (2022). https://doi.org/10.1007/s11760-021-01970-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01970-x

Keywords

Navigation