Skip to main content
Log in

Dynamic Recrystallization of Cu-Cr-Ni-Si-Co Alloy During Hot Deformation

  • Defect and Phase Transformation Pathway Engineering for Desired Microstructures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hot compression deformation behavior of the Cu-0.45Cr-1.0Ni-0.28Si-0.14Co alloy was studied by a thermal-mechanical simulator at strain rates of 0.001–1 s−1 and deformation temperatures of 700–900°C. The microstructure and texture of the copper alloy after the hot compression deformation were investigated. The results showed that the flow behavior of the Cu-Cr-Ni-Si-Co alloy was significantly affected by the deformation temperature and strain rate. The typical dynamic recrystallization (DRX) occurred at high temperatures and low strain rates, while the typical dynamic recovery (DRV) appeared at low temperatures and high strain rates. When the deformation temperature increased from 700°C to 900°C, a transition from copper and S texture to gross texture was found. The value of hot deformation activation energy (Q) was calculated as 330.87 kJ/mol. The optimized hot deformation parameters for the Cu-Cr-Ni-Si-Co alloy were 800–850°C/0.01–0.1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.Z. Ma, Z. Li, W.T. Qiu, Z. Xiao, Z.L. Zhao, Y.B. Jiang, Z.Q. Xia, and H.Y. Huang, J. Alloys Compd. 820, 153112. (2019).

    Article  Google Scholar 

  2. P. Virtanen, and T. Tiainen, Mater. Sci. Eng. A. 238, 407. (1997).

    Article  Google Scholar 

  3. V.T. Witusiewicz, I. Arpshofen, H.J. Seifert, F. Sommer, and F. Aldinger, J. Alloys Compd. 337, 155. (2002).

    Article  Google Scholar 

  4. S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, and Y. Waseda, J. Alloys Compd. 417, 116. (2006).

    Article  Google Scholar 

  5. J.G. Lei, P. Liu, D.M. Zhao, B.X. Kang, B.H. Tian, and T. Mater, Heat. Treat. 24, 22. (2003).

    Google Scholar 

  6. Y.J. Ban, Y. Zhang, B.H. Tian, K.X. Song, M. Zhou, X.H. Zhang, Y.L. Jia, Y.F. Geng, Y. Liu, and A.A. Volinsky, Mater. Charact. 169, 110656. (2020).

    Article  Google Scholar 

  7. X.P. Xiao, Z.Y. Yi, T.T. Chen, R.Q. Liu, and H. Wang, J. Alloys Compd. 660, 178. (2016).

    Article  Google Scholar 

  8. G.J. Hunag, X.P. Xiao, J.M. Ma, Y. Zhao, and T. Mater, Heat. Treat. 35, 58. (2014).

    Google Scholar 

  9. Y. Liu, Z. Li, Y.X. Jiang, Y. Zhang, Z.Y. Zhou, and Q. Lei, J. Mater. Res. 32, 1324. (2017).

    Article  Google Scholar 

  10. Z.L. Zhao, Z. Xiao, Z. Li, W.T. Qiu, and S.J. Zhang, Mater. Sci. Eng. A 759, 396. (2019).

    Article  Google Scholar 

  11. J.H. Su, Q.M. Dong, and P. Liu, Mater. Sci. Eng. A 392, 422. (2005).

    Article  Google Scholar 

  12. V.V. Kokorin, L.E. Kozlova, and A.N. Titenko, Scr. Mater. 47, 499. (2002).

    Article  Google Scholar 

  13. Y. Zhang, P. Liu, B.H. Tian, L. Fan, F.Z. Ren, and T. Mater, Heat. Treat. 32, 1. (2011).

    Google Scholar 

  14. J. Chalon, J.D. Guérin, L. Dubar, A. Dubois, and E.S. Puchi-Cabrera, Mater. Sci. Eng. A 667, 77. (2016).

    Article  Google Scholar 

  15. L. Zhang, Z. Li, Q. Lei, W.T. Qiu, and H.T. Luo, Mater Sci. Eng. A 528, 1641. (2011).

    Article  Google Scholar 

  16. Q. Lei, Z. Li, J. Wang, J.M. Xie, X. Chen, S. Li, Y. Gao, and L. Li, Mater. Des. 51, 1104. (2013).

    Article  Google Scholar 

  17. Y. Zhang, B.H. Tian, A.A. Volinsky, X.H. Chen, H.L. Sun, Z. Chai, P. Liu, and Y. Liu, J. Mater. Res. 31, 1275. (2016).

    Article  Google Scholar 

  18. A. Galiyev, R. Kaibyshev, and G. Gottstein, Acta Mater. 49, 119. (2001).

    Article  Google Scholar 

  19. D.J. Li, Y.R. Feng, S.Y. Song, Q. Liu, Q. Bai, F.Z. Ren, and F.S. Shangguan, J. Alloys Compd. 618, 768. (2015).

    Article  Google Scholar 

  20. Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, Z. Chai, P. Liu, and Y. Liu, Acta Metall. Sin. Engl. 29, 422. (2016).

    Article  Google Scholar 

  21. F.T. Kong, N. Cui, Y.Y. Chen, X.P. Wang, and N.N. Xiong, Intermetallics 55, 66. (2014).

    Article  Google Scholar 

  22. C.M. Sellars, and W.J. McTegart, Acta Metall. 14, 1136. (1966).

    Article  Google Scholar 

  23. Y.H. Wang, B. Gong, and B. Li, J. Plast. Eng. 15, 113. (2008).

    Google Scholar 

  24. R. Kaibyshev, O. Sitdikov, A. Goloborodko, and T. Sakai, Mater. Sci. Eng. A 344, 348. (2003).

    Article  Google Scholar 

  25. H. Takuda, H. Fujimoto, and N. Hatta, J. Mater. Process. Technol. 80, 513. (1998).

    Article  Google Scholar 

  26. J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Metall. Rev. 14, 1. (1969).

    Article  Google Scholar 

  27. G. Shen, S.L. Semiatin, and T. Altan, J. Mater. Process. Technol. 36, 303. (1993).

    Article  Google Scholar 

  28. W.J.M. Tegart, Acta Metall. 9, 614. (1961).

    Article  Google Scholar 

  29. C. Zene, and J.H. Hollomon, J. Appl. Phys. 17, 69. (1946).

    Article  Google Scholar 

  30. H. Takuda, H. Fujimoto, and N. Hatta, J. Mater. Process. Technol. 80–81, 513. (1998).

    Article  Google Scholar 

  31. Y.V.R.K. Prasad, and T. Seshacharyulu, Mater. Sci. Eng. A 243, 82. (1998).

    Article  Google Scholar 

  32. S.K. Rajput, G.P. Chaudhari, and S.K. Nath, J. Mater. Process. Technol. 237, 113. (2016).

    Article  Google Scholar 

  33. D. Padmavardhani, and Y.V.R.K. Prasad, J. Mater. Sci. 28, 5275. (1993).

    Article  Google Scholar 

  34. P.W. Li, H.Z. Li, L. Huang, X.P. Liang, Z.X. Zhu, and T. Nonferr, Met. Soc. China. 27, 1677. (2017).

    Google Scholar 

  35. H.Z. Zhao, L. Xiao, P. Ge, J. Sun, and Z.P. Xi, Mater. Sci. Eng. A 604, 111. (2014).

    Article  Google Scholar 

  36. Y. Zhang, Z. Chai, A.A. Volinsky, B.H. Tian, H.L. Sun, P. Liu, and Y. Liu, Mater. Sci. Eng. A 662, 320. (2016).

    Article  Google Scholar 

  37. D.Y. Cai, L.Y. Xiong, W.C. Liu, G.D. Sun, and M. Yao, Mater. Des. 30, 921. (2009).

    Article  Google Scholar 

  38. S.V.S.N. Murty, and B.N. Rao, J. Mater. Process. Technol. 104, 103. (2000).

    Article  Google Scholar 

  39. A.Y. Zhu, J.L. Chen, Z. Li, L.Y. Luo, Q. Lei, L. Zhang, W. Zhang, and T. Nonferr, Met. Soc. China 23, 1349. (2013).

    Google Scholar 

  40. E. Cerri, S. Spigarelli, E. Evangelista, and P. Cavaliere, Mater. Sci. Eng. A 324, 157. (2002).

    Article  Google Scholar 

  41. H. Zhang, N.P. Jin, and J.H. Chen, Trans. Nonferrous Met. Soc. China 21, 437. (2011).

    Article  Google Scholar 

  42. L. Li, and X.M. Zhang, Mater. Sci. Eng. A 528, 1396. (2011).

    Article  Google Scholar 

  43. L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, J. Alloys Compd. 623, 69. (2015).

    Article  Google Scholar 

  44. H.Y. Zhan, W.D. Zeng, G. Wang, D. Kent, and M. Dargusch, Mater. Charact. 102, 103. (2015).

    Article  Google Scholar 

  45. D.J. Li, Y.R. Feng, Z.F. Yin, F.S. Shangguan, K. Wang, Q. Liu, and F. Hu, Mater. Sci. Eng. A 528, 8084. (2011).

    Article  Google Scholar 

  46. H. Mirzadeh, J. Mater. Eng. Perform. 24, 1095. (2015).

    Article  Google Scholar 

  47. X.G. Fan, X. Zeng, H. Yang, P.F. Gao, M. Meng, R. Zui, P.H. Lei, and T. Nonferr, Met. Soc. China 27, 2390. (2017).

    Google Scholar 

  48. A. Hadadzadeh, F. Mokdad, M.A. Wells, and D.L. Chen, Mater. Sci. Eng. A 709, 285. (2018).

    Article  Google Scholar 

  49. A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai, Mater. Sci. Eng. A 323, 177. (2002).

    Article  Google Scholar 

  50. Q. Lei, Z. Li, W.P. Hu, Y. Liu, C.L. Meng, B. Derby, and W. Zhang, J. Mater. Eng. Perform. 25, 2615. (2016).

    Article  Google Scholar 

  51. J.J. Sidor, and L.A.I. Kestens, Scr. Mater. 68, 273. (2013).

    Article  Google Scholar 

  52. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon, Acta Mater. 45, 4751. (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51974375), Technology Research Program of Ningbo, China (No. 2019B10088), and grants from the Project of State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Xiao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there was no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1696 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, Z., Xiao, Z. et al. Dynamic Recrystallization of Cu-Cr-Ni-Si-Co Alloy During Hot Deformation. JOM 73, 2274–2284 (2021). https://doi.org/10.1007/s11837-021-04731-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04731-w

Navigation