Skip to main content
Log in

Model-free fractional-order adaptive back-stepping prescribed performance control for wearable exoskeletons

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a novel model-free fractional-order adaptive back-stepping control scheme for the wearable exoskeletons with constraints on the joint angle tracking errors. Firstly, the ultra-local model based intelligent proportion integration differentiation (iPID) control is combined with time delay estimation (TDE) to realize a model-free feature, and the precise modeling process can be abandoned. Then, an adaptive back-stepping controller is introduced to handle with the estimation errors of TDE. Control behavior is greatly improved by introducing the fractional-order calculus and prescribed performance is guaranteed by the log-type barrier Lyapunov function implemented in the back-stepping approach. In addition, system stability is verified via Lyapunov stability theory. Finally, to demonstrate the effectiveness of the proposed control scheme, a 5 DOF wearable exoskeleton virtual prototype is designed in SolidWorks and transferred to MATLAB as the controlled plant for visualization simulation. Simulation results show the improved performance between the proposed method and comparison methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aghababa, P.M.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn. 78(3), 2129–2140 (2014)

    Article  MathSciNet  Google Scholar 

  • Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  • Ahmed, S., Wang, H., Tian, Y.: Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton. Asia J. Control 21(1), 473–482 (2019)

    Article  MathSciNet  Google Scholar 

  • Alberto, E., Mukul, T., Andrew, P., Michael, S.: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil. 91(11), 911–921 (2012)

    Article  Google Scholar 

  • Amiri, M.S., Ramli, R., Ibrahim, M.F.: Hybrid design of PID controller for four DoF lower limb exoskeleton. Appl. Math. Model. 72, 17–27 (2019)

    Article  MathSciNet  Google Scholar 

  • Bu, X., Hou, Z., Zhang, H.: Data-driven multiagent systems consensus tracking using model free adaptive control. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1514–1524 (2017)

    Article  MathSciNet  Google Scholar 

  • Chen, YangQuan: Ubiquitous fractional order controls. IFAC Proc. 39(11), 481–492 (2006)

    Article  Google Scholar 

  • Chen, C., Zhijiang, Du., He, L., Wang, J., Dongmei, Wu., Dong, W.: Active disturbance rejection with fast terminal sliding mode control for a lower limb exoskeleton in swing phase. IEEE Access 7, 72343–72357 (2019)

    Article  Google Scholar 

  • de Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59(5), 671–681 (2016)

    Article  Google Scholar 

  • Fliess, M., Join, C.: Model-free control. Int. J. Control 86(12), 2228–2252 (2013)

    Article  MathSciNet  Google Scholar 

  • Han, S., Tian, H.W.Y., Christov, N.: Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA Trans. 97, 171–181 (2020a)

    Article  Google Scholar 

  • Han, S., Wang, H., Tian, Y.: A linear discrete-time extended state observer-based intelligent PD controller for a 12 DOFs lower limb exoskeleton LLE-RePA. Mech. Syst. Signal Process. 138, 1–15 (2020b)

    Article  Google Scholar 

  • He, W., Li, Z., Dong, Y., Zhao, T.: Design and adaptive control for an upper limb robotic exoskeleton in presence of input saturation. IEEE Trans. Neural Netw. Learn. Syst. 30(1), 97–108 (2018)

    Article  MathSciNet  Google Scholar 

  • He, W., Xue, C., Xinbo, Yu., Li, Z., Yang, C.: Admittance-based controller design for physical human-robot interaction in the constrained task space. IEEE Trans. Autom. Sci. Eng. 17(4), 1937–1949 (2020)

    Article  Google Scholar 

  • Hou, Z., Xiong, S.: On model-free adaptive control and its stability analysis. IEEE Trans. Autom. Control 64(11), 4555–4569 (2019)

    Article  MathSciNet  Google Scholar 

  • Jin, Xu.: Nonrepetitive trajectory tracking for nonlinear autonomous agents with asymmetric output constraints using parametric iterative learning control. Int. J. Robust Nonlinear Control 29(6), 1941–1955 (2019)

    Article  MathSciNet  Google Scholar 

  • Kazerooni, H., Steger, R.: The Berkeley lower extremity exoskeleton. J. Dyn. Syst. Meas. Control 128(1), 14–25 (2006)

    Article  Google Scholar 

  • Kazerooni, H., Steger, R., Huang, L.: Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). Int. J. Robot. Res. 25(5), 561–573 (2006)

    Article  Google Scholar 

  • Lee, J., Chang, P., Jin, M.: Adaptive integral sliding mode control with time-delay estimation for robot manipulators. IEEE Trans. Ind. Electron. 64(8), 6796–6804 (2017)

    Article  Google Scholar 

  • Li, Y., Tong, S.: Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(99), 3059–3068 (2018)

    MathSciNet  Google Scholar 

  • Li, Z., Chunyi, Su., Liang, L., Chen, Z., Chai, T.: Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation. IEEE Trans. Ind. Electron. 62(9), 5763–5775 (2015)

    Article  Google Scholar 

  • Li, Z., Huang, Z., He, W., Chun-Yi, Su.: Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64(2), 1664–1674 (2017)

    Article  Google Scholar 

  • Li, H., Zhao, S., He, We., Renquan, Lu.: Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)

    Article  MathSciNet  Google Scholar 

  • Li, Y., Li, K., Tong, S.: Adaptive neural network finite-time control for multi-input and multi-output nonlinear systems with positive powers of odd rational numbers. IEEE Trans. Neural Netw.0 Learn. Syst. 31(7), 2532–2543 (2020)

    MathSciNet  Google Scholar 

  • Liu, Y., Tong, S.: Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 76, 143–152 (2017)

    Article  MathSciNet  Google Scholar 

  • Liu, Lu., Zhang, S., Xue, D., Chen, Y.: General robustness analysis and robust fractional-order PD controller design for fractional-order plants. IET Control Theory Appl. 12(12), 1730–1736 (2018)

    Article  MathSciNet  Google Scholar 

  • Ni, J., Liu, L., Liu, C.: Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems. Nonlinear Dyn. 89(3), 2065–2083 (2017)

    Article  MathSciNet  Google Scholar 

  • Nikdel, N., Badamchizadeh, M.A.: Fractional-order adaptive backstepping control of a class of uncertain systems with external disturbances. Int. J. Control 92(6), 1344–1353 (2017)

    Article  MathSciNet  Google Scholar 

  • Nojavanzadeh, D., Badamchizadeh, M.: Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory Appl. 10(13), 1565–1572 (2016)

    Article  MathSciNet  Google Scholar 

  • Pacchierotti, C., Sinclair, S., Solazzi, M., Frisoli, A., Hayward, V., Prattichizzo, D.: Wearable haptic systems for the fingertip and the hand. IEEE Trans. Haptics 10(4), 580–600 (2017)

    Article  Google Scholar 

  • Ronghu Chi, Yu., Hui, B.H., Hou, Z.: Discrete-time extended state observer-based model-free adaptive control via local dynamic linearization. IEEE Trans. Ind. Electron. 67(10), 8691–8701 (2020)

    Article  Google Scholar 

  • Sun, N., Liang, D., Yiming, Wu., Chen, Y., Qin, Y., Fang, Y.: Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input. Constraints 16(2), 969–979 (2020)

    Google Scholar 

  • Wang, Y., Linyi, Gu., Yihong, Xu., Cao, X.: Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode. IEEE Trans. Ind. Electron. 63(10), 6194–6204 (2016)

    Article  Google Scholar 

  • Wang, S., Haisheng, Yu., Jinpeng, Yu., Na, J., Ren, X.: Neural-network-based adaptive funnel control for servo mechanisms with unknown dead-zone. IEEE Trans. Cybern. 50(4), 1383–1394 (2020a)

    Article  Google Scholar 

  • Wang, H., Hui, Xu., Tian, Y., Tang, H.: Variable adaptive model free control of iReHave upper-limb exoskeleton. Adv. Eng. Softw. 148, 1–11 (2020b)

    Google Scholar 

  • Xuhui, Bu., Qiongxia, Yu., Hou, Z., Qian, W.: Model free adaptive iterative learning consensus tracking control for a class of nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 49(4), 677–686 (2019)

    Article  Google Scholar 

  • Yang, T., Sun, N., Chen, He., Fang, Y.: Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 901–914 (2020)

    Article  MathSciNet  Google Scholar 

  • Yin, C., Chen, Y., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhang, G., Yang, P., Wang, J., Sun, J.: Multivariable finite-time control of 5 DOF upper-limb exoskeleton based on linear extended observer. IEEE Access 6, 43213–43221 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant numbers 61703134, 62003124 and 61703135), Natural Science Foundation of Tianjin City (Grant number 17JCQNJC04400), Natural Science Foundation of Hebei ProvinceNatural Science Foundation of Hebei Province (Grant numbers F2019202369, F2018202279, F2019202363), Youth Foundation of Hebei Educational Committee (Grant number QN2018140), Graduate Innovation Foundation of Hebei Province (Grant number No.220056) and Key R&D Program of Hebei Province (Grant number 20310802D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 3, 4, 5, 6 and 7.

Table 3 Parameters of qd1
Table 4 Parameters of qd2
Table 5 Parameters of qd3
Table 6 Parameters of qd4
Table 7 Parameters of qd5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, J., Yang, P. et al. Model-free fractional-order adaptive back-stepping prescribed performance control for wearable exoskeletons. Int J Intell Robot Appl 5, 590–605 (2021). https://doi.org/10.1007/s41315-021-00166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00166-3

Keywords

Navigation