Skip to main content
Log in

Quantum Field Theory Formulated as a Markov Process Determined by Local Configuration

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We propose the quantum field formalism as a new type of stochastic Markov process determined by local configuration. Our proposed Markov process is different with the classical one, in which the transition probability is determined by the state labels related to the character of state. In the new quantum Markov process, the transition probability is determined not only by the state character, but also by the occupation of the state. Due to the probability occupation of the state, the classical relation between the probability and condition probability at different times is no more valid. We have formulated the chain relation of successive transition for transition probability of the quantum Markov process instead of classical Chapman–Kolmogorov equation. The master equation is valid only in a classical Markov process. We have derived Euler-Lagrange equation in operator form as a characteristic equation of motion for the evolution of particle states as a Markov process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nelson, E.: Derivation of the Schrodinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  ADS  Google Scholar 

  2. Srinivas, M.D.: Quantum mechanics as a generalized stochastic theory in phase space. Phys. Rev. D 15, 2837–2849 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  3. Grabert, H., Hanggi, P., Talkner, P.: Is quantum mechanics equivalent to a classical stochastic process. Phys. Rev. A 19, 2440–2445 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  4. Guerra, F.: Structural aspects of Stochastic Mechanics and Stochastic field theory. Phys. Rep. 77, 263–312 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  5. Siena, S.D., Guerra, F., Ruggiero, P.: Stochastic quantization of the vector-meson field. Phys. Rev. D 27, 2912–2915 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  6. Werner, R.: A generalization of stochastic mechanics and its relation to quantum mechanics. Phys. Rev. D 34, 463–469 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wang, M.S.: Stochastic mechanics and Feynman path integrals. Phys. Rev. A 37, 1036–1039 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. Roncadelli, M.: Langevin formulation of quantum mechanics. Il Nuovo Cimento 11, 73–99 (1989)

    Article  MathSciNet  Google Scholar 

  9. Gillespie, D.T.: Why quantum mechanics cannot be formulated as a Markov process. Phys. Rev. A 49, 1607–1612 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Skorobogatov, G.A., Svertilov, S.I.: Quantum mechanics can be formulated as a non-Markovian stochastic process. Phys. Rev. A 58, 3426–3432 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. Olavo, L.S.F.: Foundations of quantum mechanics: connection with stochastic processes. Phys. Rev. A 61, 052109 (2000)

    Article  ADS  Google Scholar 

  12. Skorobogatov, G.A.: Deduction of the Klein-Fock-Gordon equation from a non-Markovian Stochastic equation for real pure-jump process. Int. J. Quantum Chem. 88, 614–623 (2002)

    Article  Google Scholar 

  13. Lan, B.L., Tan, Y.O.: A stochastic mechanics based on Bohm’s theory and its connection with quantum mechanics. Found. Phys. Lett. 19, 143–155 (2006)

    Article  MathSciNet  Google Scholar 

  14. Poulin, D.: Lieb-Robinson bound and locality for general Markovian quantum dynamics. Phys. Rev. Lett. 104, 190401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Andrisani, A., Petroni, N.C.: Markov processes and generalized Schrödinger equations. J. Math. Phys. 52, 113509 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Durt, T.: Quantum mechanics and the role of time: are quantum systems markovian? Int. J. Mod. Phys. B 26, 1243005 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  17. Allen, J.M.A., Barrett, J., Horsman, D.C., Lee, C.M., Spekkens, R.W.: Quantum common causes and quantum causal models. Phys. Rev. X 7, 031021 (2017)

    Google Scholar 

  18. Pollock, F.A., Rodriguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational Markov condition for quantum processes. Phys. Rev. Lett. 120, 040405 (2018)

    Article  ADS  Google Scholar 

  19. Chiribella, G.: http://arxiv.org/1412.8539 (2018)

  20. Greiner, W., Reinhardt, J.: Field Quantization. Springer, Berlin (1996)

    Book  Google Scholar 

  21. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle System. McGraw-Hill, New York (1971)

    Google Scholar 

  22. Ni, J.: Principles of Physics: From Quantum Field Theory to Classical Mechanics. World Scientific Publishing, Singapore (2017)

    Book  Google Scholar 

  23. Gordon, W.D.: Der Comptoneffekt nach der Schrodingerschen Theorie. Z. Phys. 40, 117–133 (1926)

    Article  ADS  Google Scholar 

  24. Klein, O.: Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespondenz prinzips. Z. Phys. 41, 407–422 (1927)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China under Grants No. 2016YFB0700102, the National Natural Science Foundation of China under Grants No. 11774195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ni.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J. Quantum Field Theory Formulated as a Markov Process Determined by Local Configuration. Found Phys 51, 74 (2021). https://doi.org/10.1007/s10701-021-00481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00481-6

Keywords

Navigation