Skip to main content
Log in

Catalyst free growth of ZnO thin film nanostructures on Si substrate by thermal evaporation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO), a wide direct band gap (3.37 eV) II-VI semiconductor, is a fascinating technological material capable of exhibiting both semiconducting and piezoelectric characteristics and distinguished performance in photonics and optoelectronics. We report the synthesis of ZnO thin films composed of randomly oriented, 1-dimensional (1-D) and multipod (tripod and tetrapod)-like nanostructures of varying diameters by thermal evaporation technique. ZnO films of 150 nm thickness were grown for various deposition rates on room temperature Si and pyrex substrates by evaporating catalyst-free ZnO powder. X-ray diffraction (XRD) analysis of the films confirmed polycrystalline nature of wurtzite ZnO nanostructures with lattice constants of a = b = 3.24 Å and c = 5.2 Å. Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) analysis revealed a strong influence of film deposition rate on the morphology of nanostructures. For a typical deposition rate of 0.04 nm/sec, aligned 1-D vertically oriented ZnO nanowires of 50–60 nm diameter having lattice spacing of 5.2 Å with [0001] facet were grown. Energy-dispersive x-ray spectroscopy (EDS) has confirmed spatially uniform high quality ZnO nanostructures growth. Micro-Raman spectra of the films confirmed appearance of characteristic longitudinal optical (LO) and transverse optical (TO) modes of wurtzite ZnO dependent on the deposition rate. The nanostructure formation is via a multiphase polytypic growth process depending on precursor growth to deposition ratio, thus promoting a particular growth facet by the crystal growth kinetics under those conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.L. Wang, J. Phys, Condens. Mater. 16, R829 (2004)

    Article  Google Scholar 

  2. R. Yang, Y. Qin, L. Dai, Z.L. Wang, Nature Nanotechnol. Lett. 4, 34 (2009)

    Article  ADS  Google Scholar 

  3. Z.L. Wang, Adv. Funct. Mater. 18, 3553 (2008)

    Article  Google Scholar 

  4. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    Article  ADS  Google Scholar 

  5. X.Y. Kong, Z.L. Wang, Appl. Phys. Lett. 84, 975 (2004)

    Article  ADS  Google Scholar 

  6. X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science 303, 1384 (2004)

    Article  Google Scholar 

  7. P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Science 309, 1700 (2005)

    Article  ADS  Google Scholar 

  8. F. Liu, P.J. Cao, H.R. Zhang, J.Q. Li, H.J. Gao, Nanotechnology 15, 949 (2004)

    Article  ADS  Google Scholar 

  9. X.D. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004)

    Article  ADS  Google Scholar 

  10. Y. Wu, X.H. Zhang, F. Xu, L.S. Zhang, J. Kang, Nanotechnology 20(32), 325709 (2009)

    Article  Google Scholar 

  11. Y. Kozuka, A. Tsukazaki, M. Kawasaki, Appl. Phys. Rev. 1, 011303 (2014)

    Article  ADS  Google Scholar 

  12. J. He, X. Zheng, X. Hong, W. Wang, Y. Cao, T. Chen, L. Kong, Y. Wu, Z. Wu, J. Kang, Mater. Lett. 216, 182 (2018)

    Article  Google Scholar 

  13. J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Nano Lett. 8(9), 3035 (2008)

    Article  ADS  Google Scholar 

  14. J. Zhou, N. Xu, Z.L. Wang, Adv. Mater. 18, 2432 (2006)

    Article  Google Scholar 

  15. V.P. Singh, K. Sandeep, H.S. Kushwaha, S. Powar, R. Vaish, Constr. Build. Mater. 158, 285 (2018)

    Article  Google Scholar 

  16. X. Wang, J. Song, J. Liu, Z.L. Wang, Science 316, 102 (2007)

    Article  ADS  Google Scholar 

  17. J. Liu, P. Fei, J. Zhou, R. Tummala, Z.L. Wang, Appl. Phys. Lett. 92, 173105 (2008)

    Article  ADS  Google Scholar 

  18. Y. Qin, X. Wang, Z.L. Wang, Nature Lett. 451, 809 (2008)

    Article  ADS  Google Scholar 

  19. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  20. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Mater. Today 9, 18 (2006)

    Article  Google Scholar 

  21. G.F. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Nature Biotechnol. 23, 1294 (2005)

    Article  Google Scholar 

  22. Z. Zhang, H. Yuan, Y. Gao, J. Wang, D. Liu, J. Shen, L. Liu, W. Zhou, S. Xie, X. Wang, X. Zhu, Y. Zhao, L. Sun, Appl. Phys. Lett. 90, 153116 (2007)

    Article  ADS  Google Scholar 

  23. A.B. Djurisic, W.M. Kwok, Y.H. Leung, W.K. Chan, D.L. Phillips, M.S. Lin, S. Gwo, Nanotechnology 17(1), 244 (2006)

    Article  ADS  Google Scholar 

  24. M.C. Newton, P.A. Warburton, Mater. Today 10, 50 (2007)

    Article  Google Scholar 

  25. M. Erfan, L.M. Gnambodoe-Capochichi, F. Marty, Y.M. Sabry, T. Bourouina, Y. Leprince-Wang, Nanoscale 12, 1397 (2020)

    Article  Google Scholar 

  26. Z.L. Wang, Mater. Today 10(5), 20 (2007)

    Article  ADS  Google Scholar 

  27. Z.L. Wang, MRS Bull. 32, 109 (2007)

    Article  Google Scholar 

  28. P.C. Chang, Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong, J.G. Lu, Chem. Mater. 16, 5133 (2004)

    Article  Google Scholar 

  29. W. Lee, M. Jeong, J. Myoung, Acta Mater. 52, 3949 (2004)

    Article  ADS  Google Scholar 

  30. R.B.M. Cross, M.M. De. Souza, E.M.S. Narayanan, Nanotechnology 16, 2188 (2005)

    Article  ADS  Google Scholar 

  31. B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 757 (2002)

    Article  ADS  Google Scholar 

  32. S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R.L. Snyder, Z.L. Wang, J. Am. Chem. Soc. 130(45), 14958 (2008)

    Article  Google Scholar 

  33. E. Mosquera, M.J. Morel, J.E. Diosa, Appl. Phys. A 125(9), 613 (2019)

    Article  ADS  Google Scholar 

  34. D. Yuvaraj, M. Sathyanarayanan, K.N. Rao, Appl. Nanosci. 4, 801 (2014)

    Article  ADS  Google Scholar 

  35. V. Bilgin, S. Kose, F. Atay, I. Akyuz, Mater. Chem. Phys. 94, 103 (2005)

    Article  Google Scholar 

  36. Y.F. Gao, Z.L. Wang, Nano Lett. 7(8), 2499 (2007)

    Article  ADS  Google Scholar 

  37. Y. Ding, X.Y. Kong, Z.L. Wang, J. Appl. Phys. 95, 306 (2004)

    Article  ADS  Google Scholar 

  38. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  39. J. Serrano, F.J. Manjon, A.H. Romero, A. Ivanov, R. Lauck, M. Cardona, M. Krisch, Phys. Status Solidi b 244, 1478 (2007)

    Article  ADS  Google Scholar 

  40. H. Gao, F. Yan, J. Li, Y. Zeng, J. Wang, J. Phys. D: Appl. Phys. 40, 3654 (2007)

    Article  ADS  Google Scholar 

  41. G.S. Wu, T. Xie, X.Y. Yuan, Y. Li, L. Yang, Y.H. Xiao, L.D. Zhang, Solid State Commun. 134(7), 485 (2005)

    Article  ADS  Google Scholar 

  42. A.P. de Moura, R.C. Lima, M.L. Moreira, D.P. Volanti, J.W.M. Espinosa, M.O. Orlandi, P.S. Pizani, J.A. Varela, E. Longo, Solid State Ion. 181(15–16), 775 (2010)

    Article  Google Scholar 

  43. Z.R. Dai, Z.W. Pan, Z.L. Wang, Adv. Funct. Mater. 13, 9 (2003)

    Article  Google Scholar 

  44. G.Z. Shen, Y.S. Bando, B.D. Liu, D. Golberg, C.J. Lee, Adv. Funct. Mater. 16, 410 (2006)

    Article  Google Scholar 

  45. C. Huang, M. Wang, Y. Cao, Q. Liu, Z. Huang, Y. Liu, W. Guo, Q. Huang, J. Phys. D: Appl. Phys. 42, 165306 (2009)

    Article  ADS  Google Scholar 

  46. G.J. Jiang, H.R. Zhuang, J. Zhang, M.L. Ruan, W.L. Li, F.Y. Wu, B.L. Zhang, J. Mater. Sci. 35, 63 (2000)

    Article  Google Scholar 

  47. W. Seo, K. Koumoto, J. Am. Ceram. Soc. 79, 1777 (1996)

    Article  Google Scholar 

  48. Z.L. Wang, X.Y. Kong, J.M. Zuo, Phys. Rev. Lett. 91, 185502 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Institute of Education/ Nanyang Technological University, Singapore, for AcRF grant RI 7/08 RSR to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M., Jiaji, L., Lee, P. et al. Catalyst free growth of ZnO thin film nanostructures on Si substrate by thermal evaporation. Appl. Phys. A 127, 553 (2021). https://doi.org/10.1007/s00339-021-04650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04650-2

Keywords

Navigation