Skip to main content

Advertisement

Log in

Microstructure and Impression Creep Characteristics of A356–SiC Composites Containing Zr

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The influences of Zr on the microstructures and impression creep behavior of A356–SiC composites were investigated. An optical microscope and a scanning electron microscopy were used to examine the microstructure. An impression creep test was conducted in a temperature range of 225–275 °C under a stress range of 350–450 MPa. The addition of 0.14 wt% Zr can significantly improve the creep resistance of the A356–SiC composite. The stress exponent (n) and creep activation energy (Q) reveal that the lattice diffusion climb-controlled creep is a dislocation climb in the A356–SiC composite, and with the addition of Zr in the A356–SiC composite, grain boundary sliding is the dominant creep mechanism. The activation energy for creep is obtained in a range of 112–173 kJ/mol, which is close to the value for the lattice self-diffusion of aluminum (142 kJ/mol). The addition of Zr alters the creep mechanism of the A356–SiC composite. The creep resistance of A356–SiC composites with added Zr higher than 0.14 wt% decreases due to grain boundary sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Reference

  1. M. Mohammadpoura, R. Azari Khosroshahi, R. Taherzadeh Mousavian, D. Brabazon, Effect of interfacial active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceram. Int. 40(6), 8323–8332 (2014). https://doi.org/10.1016/j.ceramint.2014.01.038

    Article  CAS  Google Scholar 

  2. F. Akhlaghi, A. Lajevardi, H.M. Maghanaki, Effects of casting temperature on the microstructure and wear resistance of compocast A356/SiCp composites: a comparison between SS and SL routes. J. Mater. Process. Technol. 155–156, 1874–1880 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.328

    Article  CAS  Google Scholar 

  3. J.A. Garcia-Hinojosa, C.R. Gonzalez, J.A.I. Juarez, M.K. Surrapa, Effect of grain refinement treatment on the microstructure of cast Al–7Si–SiCp composites. Mater. Sci. Eng. A 386(1–2), 54–60 (2004). https://doi.org/10.1016/j.msea.2004.07.020

    Article  CAS  Google Scholar 

  4. A.P. Kumar, D. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Inter. Metalcast. 14, 291–317 (2020). https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  5. F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, M.X. Zhang, The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 61(15), 5636–5645 (2013). https://doi.org/10.1016/j.actamat.2013.05.044

    Article  CAS  Google Scholar 

  6. B. Baradarani, R. Raiszadeh, Precipitation hardening of cast Zr-containing A356 aluminium alloy. Mater. Des. 32(2), 935–940 (2011). https://doi.org/10.1016/j.matdes.2010.08.006

    Article  CAS  Google Scholar 

  7. J. Hashim, L. Looney, M.S.J. Hashmi, The wettability of SiC particles by aluminium alloy. J. Mater. Pro. Technol. 119(1–3), 324–328 (2001). https://doi.org/10.1007/BF03355452

    Article  CAS  Google Scholar 

  8. G.H. Garza-Elizondo, A.M. Samuel, F.H. Samuel, Effect of transition metals on the tensile properties of 354 alloy: role of precipitation hardening. Inter. Metalcast. 11, 413–427 (2017). https://doi.org/10.1007/s40962-016-0074-y

    Article  Google Scholar 

  9. K.E. Knipling, D.C. Dunand, Creep resistance of cast and aged Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys at 300–400 °C. Scr. Mater. 59(4), 387–390 (2008). https://doi.org/10.1016/j.scriptamat.2008.02.059

    Article  CAS  Google Scholar 

  10. J.D. Robson, P.B. Prangnell, Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys. Acta Mater. 49(4), 599–613 (2001). https://doi.org/10.1016/S1359-6454(00)00351-7

    Article  CAS  Google Scholar 

  11. J. Major, M. Hartlieb, Advances in aluminum foundry alloys for permanent and semi-permanent mold casting. Inter Metalcast 3, 43–53 (2009). https://doi.org/10.1007/BF03355452

    Article  CAS  Google Scholar 

  12. K.E. Knipling, D.C. Dunand, D.N. Seidman, Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C. Acta Mater. 56(1), 114–127 (2008). https://doi.org/10.1016/j.actamat.2007.09.004

    Article  CAS  Google Scholar 

  13. Z. Lin, F.A. Mohamed, Creep and microstructure in powder metallurgy 15 vol.% SiCp–2009 Al composite. J. Mater. Sci. 47, 2975–2984 (2012). https://doi.org/10.1007/s10853-011-6131-2

    Article  CAS  Google Scholar 

  14. Y. Li, T.G. Langdon, A comparison of the creep properties of an Al-6092 composite and the unreinforced matrix alloy. Metall. Mater. Trans. A 29, 2523–2531 (1998). https://doi.org/10.1007/s11661-998-0224-9

    Article  Google Scholar 

  15. A.B. Pandey, R.S. Mishra, Y.R. Mahajan, Steady state creep behaviour of silicon carbide particulate reinforced aluminium composites. Acta Metall. Mater. 40(8), 2045–2052 (1992). https://doi.org/10.1016/0956-7151(92)90190-P

    Article  CAS  Google Scholar 

  16. J. Čadek, H. Oikawa, V. Šustek, Threshold creep behaviour of discontinuous aluminium and aluminium alloy matrix composites: an overview. Mater. Sci. Eng. A 190(1–2), 9–23 (1995). https://doi.org/10.1016/0921-5093(94)09605-V

    Article  Google Scholar 

  17. S.N.G. Chu, J.C.M. Li, Impression creep; a new creep test. J. Mater. Sci. 12, 2200–2208 (1977). https://doi.org/10.1007/BF00552241

    Article  CAS  Google Scholar 

  18. V. Raman, R. Berriche, An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique. J. Mater. Res. 7(3), 627–638 (1992). https://doi.org/10.1557/JMR.1992.0627

    Article  CAS  Google Scholar 

  19. C. Panthglin, S. Boontein, J. Kajornchaiyakul, C. Limmaneevichitr, The Effects of Zr Addition on The Microstructure and Mechanical Properties of A356–SiC Composites. Inter Metalcast 15, 169–181 (2021). https://doi.org/10.1007/s40962-020-00439-w

    Article  CAS  Google Scholar 

  20. S. Rashno, B. Nami, S.M. Miresmaeili, Impression creep behavior of a cast MRI153 magnesium alloy. Mater. Des. 60, 289–294 (2014). https://doi.org/10.1016/j.matdes.2014.03.072

    Article  CAS  Google Scholar 

  21. F. Labib, R. Mahmudi, H.M. Ghasemi, Impression creep behavior of extruded Mg–SiCp composites. Mater. Sci. Eng .A 640, 91–97 (2015). https://doi.org/10.1016/j.msea.2015.05.090

    Article  CAS  Google Scholar 

  22. S.M. Miresmaeili, B. Nami, Impression creep behavior of Al–1.9%Ni–1.6%Mn–1%Mg alloy. Mater. Des. 56, 286–290 (2014). https://doi.org/10.1016/j.matdes.2013.11.011

    Article  CAS  Google Scholar 

  23. S. Soltani, R.A. Khosroshahi, R.T. Mousavian, Z.Y. Jiang, A.F. Boostani, D. Brabazon, Stir casting process for manufacture of Al–SiC composites. Rare Met. 36(7), 581–590 (2017). https://doi.org/10.1007/s12598-015-0565-7

    Article  CAS  Google Scholar 

  24. F. Xu, C.W. Lawrence, G. Han, Y. Tan, Compression creep behavior of high volume fraction of SiC particles reinforced Al composite fabricated by pressureless infiltration. Chinese J. Aero. 20(2), 115–119 (2007). https://doi.org/10.1016/S1000-9361(07)60016-8

    Article  Google Scholar 

  25. H.J. Ryu, W.H. Sohn, S.H. Hong, Effect of SiC volume fraction on creep behavior of SiCp/2124Al metal matrix composite. Mater. Sci. Res. Int. 5(4), 280–284 (1999). https://doi.org/10.2472/jsms.48.12Appendix_280

    Article  CAS  Google Scholar 

  26. F. Kahrıman, M. Zeren, The effect of Zr on aging kinetics and properties of as-cast AA6082 alloy. Int. J. Metal. 11, 216–222 (2017). https://doi.org/10.1007/s40962-016-0047-1

    Article  Google Scholar 

  27. R. Gupta, B.S.S. Daniel, Impression creep behaviour of ultrasonically processed in-situ Al3Ti reinforced aluminium composite. Mater. Sci. Eng. A 733, 257–266 (2018). https://doi.org/10.1016/j.msea.2018.07.017

    Article  CAS  Google Scholar 

  28. B. Nami, H. Razavi, S. Mirdamadi, S.G. Shabestari, S.M. Miresmaeili, Effect of Ca and rare earth elements on impression creep properties of AZ91 magnesium alloy. Metall. Mater. Trans. A 41, 1973–1982 (2010). https://doi.org/10.1007/s11661-010-0238-y

    Article  CAS  Google Scholar 

  29. H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, Tensile and indentation creep behavior of Mg-5% Sn and Mg-5% Sn-2% Di alloys. Mater. Sci. Eng. A 464(1–2), 124–128 (2007). https://doi.org/10.1016/j.msea.2007.02.061

    Article  CAS  Google Scholar 

  30. A. Viswanath, H. Dieringa, K.K. Ajith Kumar, U.T.S. Pillai, B.C. Pai, Investigation on mechanical properties and creep behavior of stir cast AZ91–SiCp composites. J. Magn. Alloys 3(1), 16–22 (2015). https://doi.org/10.1016/j.jma.2015.01.001

    Article  CAS  Google Scholar 

  31. F. Ji, M.Z. Ma, A.J. Song, W.G. Zhang, H.T. Zong, S.X. Liang, Y. Osamu, R.P. Liu, Creep behavior of in situ TiCP/2618 aluminum matrix composite. Mater. Sci. Eng. A 506, 58–62 (2009). https://doi.org/10.1016/j.msea.2008.11.010

    Article  CAS  Google Scholar 

  32. S. Rashno, M. Reihanian, K. Ranjbar, Effect of rare earth Er on microstructure and creep behavior of Al–7Si–0.3Mg alloy. Metals Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00562-2

    Article  Google Scholar 

  33. J.A. Taylor, Iron-containing intermetallic phases in Al–Si based casting alloys. Pro. Mater. Sci. 1, 19–33 (2012). https://doi.org/10.1016/j.mspro.2012.06.004

    Article  CAS  Google Scholar 

  34. H.E. Evans, G. Knowles, Threshold stress for creep in dispersion-strengthened alloys. Metal Sci. 14(7), 262–266 (2013). https://doi.org/10.1179/030634580790426382

    Article  Google Scholar 

  35. A.H. Clauer, N. Hansen, High temperature strength of oxide dispersion strengthened aluminium. Acta Metall. 32(2), 269–278 (1984). https://doi.org/10.1016/0001-6160(84)90055-5

    Article  CAS  Google Scholar 

  36. A.E. Hammad, A.A. Ibrahiem, Enhancing the microstructure and tensile creep resistance of Sn–3.0Ag–0.5Cu solder alloy by reinforcing nano-sized ZnO particles. Micro. Relia. 75, 187–194 (2017). https://doi.org/10.1016/j.microrel.2017.07.034

    Article  CAS  Google Scholar 

  37. O.D. Sherby, E.M. Taleff, Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids. Mater. Sci. Eng. A 322(1–2), 89–99 (2002). https://doi.org/10.1016/S0921-5093(01)01121-2

    Article  Google Scholar 

  38. M. Cabibbo, Strengthening evaluation in a composite Mg-RE alloy using TEM. Mater. Sci. Forum 678, 75–84 (2011). https://doi.org/10.4028/www.scientific.net/MSF.678.75

    Article  CAS  Google Scholar 

  39. S. Spigarelli, C. Paoletti, A new model for the description of creep behaviour of aluminium-based composites reinforced with nanosized particles. Com. Part A Appl. Sci. Manu. 112, 325–355 (2018). https://doi.org/10.1016/j.compositesa.2018.06.021

    Article  CAS  Google Scholar 

  40. J.C. Gibeling, Mechanical Testing an Evaluation, A.S.M. Handbook, vol. 8, (American Society for Metals, Materials Park, 2003), pp. 789–798

  41. S. Rashno, K. Ranjbar, M. Reihanian, Impression creep characterization of cast Al–7Si–0.3 Mg alloy. Mater. Res. Express 6(8), 0865e6 (2019). https://doi.org/10.1088/2053-1591/ab251b

    Article  CAS  Google Scholar 

  42. M. Reihanian, K. Ranjbar, S. Rashno, Microstructure and impression creep behavior of Al–7Si–0.3Mg alloy with Zr addition. Metals Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00628-6

    Article  Google Scholar 

Download references

Acknowledgements

CP is grateful to Thailand Graduate Institute of Science and Technology (TGIST) No. TG-33-20-57-043D for her Ph.D. scholarship. This work was supported by a grant from Research Strengthening Project of the Faculty of Engineering, King Mongkut’s University of Technology Thonburi and Mr. Chaow Niumsorn’s Commemorative Fund. The authors thank Ghit Laungsopapun at Thailand Institute of Scientific and Technological Research for his support of the SEM and EDS for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Limmaneevichitr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panthglin, C., Boontein, S., Kajornchaiyakul, J. et al. Microstructure and Impression Creep Characteristics of A356–SiC Composites Containing Zr. Inter Metalcast 16, 783–797 (2022). https://doi.org/10.1007/s40962-021-00620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00620-9

Keywords

Navigation