Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular imaging and disease theranostics with renal-clearable optical agents

Abstract

Optical imaging in disease diagnosis and treatment benefits from high spatiotemporal resolution and the availability of numerous optical agents. However, many optical imaging probes are cleared by the reticuloendothelial system, which can lead to probe accumulation in the liver and spleen and hence organ toxicity. By contrast, renal-clearable optical agents (RCOAs) are rapidly excreted from the body via the kidneys, undergoing minimal metabolism. In this Review, we discuss the design principles of RCOAs, with a focus on imaging and disease theranostics (the combination of diagnosis and therapy). Renal excretion of RCOAs makes them intrinsically suitable for targeted kidney imaging, including passive monitoring of the glomerular filtration rate and detection of early kidney injury biomarkers. The pharmacokinetics of RCOAs can further be tailored to prolong their circulation in the blood, allowing deep tumour penetration and high-contrast tumour imaging. Finally, we discuss intraoperative image-guided surgery and optical urinalysis, and suggest future applications of RCOAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major milestones and classifications of RCOAs.
Fig. 2: Clearance pathways of optical agents.
Fig. 3: RCOAs for monitoring the glomerular filtration rate.
Fig. 4: RCOAs for real-time kidney imaging.
Fig. 5: RCOAs for real-time cancer imaging.
Fig. 6: RCOAs for intraoperative fluorescence-guided surgery.
Fig. 7: RCOAs for optical urinalysis.

Similar content being viewed by others

References

  1. Naumova, A. V., Modo, M., Moore, A., Murry, C. E. & Frank, J. A. Clinical imaging in regenerative medicine. Nat. Biotechnol. 32, 804–818 (2014).

    Article  CAS  Google Scholar 

  2. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    Article  CAS  Google Scholar 

  3. Massoud, T. F. & Gambhir, S. S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  Google Scholar 

  4. James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92, 897–965 (2012).

    Article  CAS  Google Scholar 

  5. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  Google Scholar 

  6. Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003).

    Article  CAS  Google Scholar 

  7. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  CAS  Google Scholar 

  8. Zhou, C., Long, M., Qin, Y., Sun, X. & Zheng, J. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. Int. Ed. 50, 3168–3172 (2011).

    Article  CAS  Google Scholar 

  9. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  10. Hong, G., Diao, S., Antaris, A. L. & Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816–10906 (2015).

    Article  CAS  Google Scholar 

  11. Burns, A., Ow, H. & Wiesner, U. Fluorescent core–shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem. Soc. Rev. 35, 1028–1042 (2006).

    Article  CAS  Google Scholar 

  12. Li, J. & Pu, K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 48, 38–71 (2019).

    Article  CAS  Google Scholar 

  13. Urano, Y. et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 15, 104–109 (2009).

    Article  CAS  Google Scholar 

  14. Lovell, J. F., Liu, T. W., Chen, J. & Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010).

    Article  CAS  Google Scholar 

  15. Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020).

    Article  CAS  Google Scholar 

  16. Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).

    Article  CAS  Google Scholar 

  17. Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Rel. 240, 332–348 (2016).

    Article  CAS  Google Scholar 

  18. Karmali, P. P. & Simberg, D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin. Drug Deliv. 8, 343–357 (2011).

    Article  CAS  Google Scholar 

  19. Guyton, A. C. & Hall, J. E. Textbook of Medical Physiology 14th edn Vol. 3 (Elsevier, 2006).

  20. Yu, M. & Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).

    Article  CAS  Google Scholar 

  21. Ye, L. et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol. 7, 453–458 (2012).

    Article  CAS  Google Scholar 

  22. Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007). This paper reports that the size threshold of inorganic spherical nanoparticles (quantum dots) to pass the glomerular filtration membrane is 5.5 nm.

    Article  CAS  Google Scholar 

  23. Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    Article  CAS  Google Scholar 

  24. Ruggiero, A. et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl Acad. Sci. USA 107, 12369–12374 (2010).

    Article  CAS  Google Scholar 

  25. Zhang, X.-D. et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33, 4628–4638 (2012).

    Article  CAS  Google Scholar 

  26. Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3, 358–374 (2018). This review comprehensively summarizes the transport pathway and interactions of renal-clearable nanoparticles in the kidneys.

    Article  Google Scholar 

  27. Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article  CAS  Google Scholar 

  28. Berglund, F. Renal clearances of inulin, polyfructosan-S and a polyethylene glycol (PEG 1,000) in the rat. Acta Physiol. Scand. 64, 238–244 (1965).

    Article  CAS  Google Scholar 

  29. Cole, B. R., Giangiacomo, J., Ingelfinger, J. R. & Robson, A. M. Measurement of renal function without urine collection: a critical evaluation of the constant-infusion technic for determination of inulin and para-aminohippurate. N. Engl. J. Med. 287, 1109–1114 (1972).

    Article  CAS  Google Scholar 

  30. Mertz, D. Observations on the renal clearance and the volume of distribution of polyfructosan-S, a new inulin-like substance. Experientia 19, 248–249 (1963).

    Article  CAS  Google Scholar 

  31. Venturoli, D. & Rippe, B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Ren. Physiol. 288, F605–F613 (2005). This review summarizes the effects of molecular size, shape, charge and deformability of organic renal-clearable macromolecules on the glomerular sieving coefficient.

    Article  CAS  Google Scholar 

  32. Arisz, L., Hazenberg, B. P., van Zanten, A. & Mandema, E. Renal excretion of low and high molecular weight polyvinylpyrrolidone (PVP) in patients with proteinuria. Acta Med. Scand. 186, 393–400 (1969).

    Article  CAS  Google Scholar 

  33. Rippe, C., Asgeirsson, D., Venturoli, D., Rippe, A. & Rippe, B. Effects of glomerular filtration rate on Ficoll sieving coefficients (θ) in rats. Kidney Int. 69, 1326–1332 (2006).

    Article  CAS  Google Scholar 

  34. Hemmelder, M. H., de Jong, P. E. & de Zeeuw, D. A comparison of analytic procedures for measurement of fractional dextran clearances. J. Lab. Clin. Med. 132, 390–403 (1998).

    Article  CAS  Google Scholar 

  35. Tencer, J., Frick, I. M., Oquist, B. W., Alm, P. & Rippe, B. Size-selectivity of the glomerular barrier to high molecular weight proteins: upper size limitations of shunt pathways. Kidney Int. 53, 709–715 (1998).

    Article  CAS  Google Scholar 

  36. Arturson, G., Granath, K. & Grotte, G. Intravascular persistence and renal clearance of dextran of different molecular sizes in normal children. Arch. Dis. Child. 41, 168–171 (1966).

    Article  CAS  Google Scholar 

  37. Mogensen, C. The glomerular permeability determined by dextran clearance using Sephadex gel filtration. Scand. J. Clin. Lab. Invest. 21, 77–82 (1968).

    Article  CAS  Google Scholar 

  38. Shaffer, C. B., Critchfield, F. H. & Carpenter, C. P. Renal excretion and volume distribution of some polyethylene glycols in the dog. Am. J. Physiol. Leg. Content 152, 93–99 (1947).

    Article  Google Scholar 

  39. Jorgensen, K. & Moller, J. Use of flexible polymers as probes of glomerular pore size. Am. J. Physiol. Ren. Physiol. 236, F103–F111 (1979).

    Article  CAS  Google Scholar 

  40. Schwarz, W. PVP: a Critical Review of the Kinetics and Toxicology of Polyvinylpyrrolidone (Povidone) (CRC, 1990).

  41. Loftsson, T. & Brewster, M. E. Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 62, 1607–1621 (2010).

    Article  CAS  Google Scholar 

  42. Du, B. et al. Tailoring kidney transport of organic dyes with low-molecular-weight PEGylation. Bioconjugate Chem. 31, 241–247 (2020).

    Article  CAS  Google Scholar 

  43. Menon, M. C., Chuang, P. Y. & He, C. J. The glomerular filtration barrier: components and crosstalk. Int. J. Nephrol. 2012, 749010 (2012).

    Article  Google Scholar 

  44. Chang, R. L., Deen, W. M., Robertson, C. R. & Brenner, B. M. Permselectivity of the glomerular capillary wall. III. Restricted transport of polyanions. Kidney Int. 8, 212–218 (1975).

    Article  CAS  Google Scholar 

  45. Michels, L. D., Davidman, M. & Keane, W. F. Glomerular permeability to neutral and anionic dextrans in experimental diabetes. Kidney Int. 21, 699–705 (1982).

    Article  CAS  Google Scholar 

  46. Bohrer, M. P. et al. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. J. Clin. Invest. 61, 72–78 (1978).

    Article  CAS  Google Scholar 

  47. Rennke, H. G., Patel, Y. & Venkatachalam, M. A. Glomerular filtration of proteins: clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int. 13, 278–288 (1978).

    Article  CAS  Google Scholar 

  48. Yu, M. et al. Interactions of renal-clearable gold nanoparticles with tumor microenvironments: vasculature and acidity effects. Angew. Chem. Int. Ed. 56, 4314–4319 (2017). This paper reports that renal-clearable gold nanoparticles exhibit similar tumour uptake efficiency and penetration in tumours with different vasculatures.

    Article  CAS  Google Scholar 

  49. Ning, X. et al. Physiological stability and renal clearance of ultrasmall zwitterionic gold nanoparticles: ligand length matters. APL Mater. 5, 053406 (2017).

    Article  Google Scholar 

  50. Huang, J. et al. Zwitterionic near infrared fluorescent agents for noninvasive real-time transcutaneous assessment of kidney function. Chem. Sci. 8, 2652–2660 (2017).

    Article  CAS  Google Scholar 

  51. Choi, H. S. et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew. Chem. Int. Ed. 50, 6258–6263 (2011).

    Article  CAS  Google Scholar 

  52. Wang, K. & Kestenbaum, B. Proximal tubular secretory clearance: a neglected partner of kidney function. Clin. J. Am. Soc. Nephrol. 13, 1291–1296 (2018).

    Article  CAS  Google Scholar 

  53. Du, B. et al. Hyperfluorescence imaging of kidney cancer enabled by renal secretion pathway dependent efflux transport. Angew. Chem. Int. Ed. 60, 351–359 (2020).

    Article  Google Scholar 

  54. Williams, R. M. et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 15, 2358–2364 (2015).

    Article  CAS  Google Scholar 

  55. Williams, R. M. et al. Selective nanoparticle targeting of the renal tubules. Hypertension 71, 87–94 (2018).

    Article  CAS  Google Scholar 

  56. Han, S. J. et al. Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney Int. 98, 76–87 (2020).

    Article  CAS  Google Scholar 

  57. Huang, J., Li, J., Lyu, Y., Miao, Q. & Pu, K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019). This paper reports MRPs for sensitive and specific detection of AKI and that the detection time point is earlier than current clinical diagnostic methods.

    Article  CAS  Google Scholar 

  58. He, S., Li, J., Lyu, Y., Huang, J. & Pu, K. Near-infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J. Am. Chem. Soc. 142, 7075–7082 (2020).

    Article  CAS  Google Scholar 

  59. Liu, J. et al. PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem. Int. Ed. 52, 12572–12576 (2013).

    Article  CAS  Google Scholar 

  60. Cheng, L. et al. Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv. Funct. Mater. 27, 1702928 (2017).

    Article  Google Scholar 

  61. Chertow, G. M., Burdick, E., Honour, M., Bonventre, J. V. & Bates, D. W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 16, 3365–3370 (2005).

    Article  Google Scholar 

  62. Hoste, E. A. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14, 607–625 (2018).

    Article  CAS  Google Scholar 

  63. Vaidya, V. S. et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol. 28, 478–485 (2010).

    Article  CAS  Google Scholar 

  64. Grenier, N. in Radiological Imaging of the Kidney (ed. Quaia, E.) 839−861 (Springer, 2014).

  65. Qi, Z. et al. Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am. J. Physiol. Ren. Physiol. 286, F590–F596 (2004).

    Article  CAS  Google Scholar 

  66. Wang, E. et al. A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney Int. 81, 112–117 (2012).

    Article  Google Scholar 

  67. Sohtell, M., Karlmark, B. & Ulfendahl, H. FITC-inulin as a kidney tubule marker in the rat. Acta Physiol. Scand. 119, 313–316 (1983).

    Article  CAS  Google Scholar 

  68. Lorenz, J. N. & Gruenstein, E. A simple, nonradioactive method for evaluating single-nephron filtration rate using FITC-inulin. Am. J. Physiol. Ren. Physiol. 276, F172–F177 (1999).

    Article  CAS  Google Scholar 

  69. Huang, J. et al. Fluorescently labeled cyclodextrin derivatives as exogenous markers for real-time transcutaneous measurement of renal function. Bioconjugate Chem. 27, 2513–2526 (2016).

    Article  CAS  Google Scholar 

  70. Pill, J. et al. Pharmacological profile and toxicity of fluorescein-labelled sinistrin, a novel marker for GFR measurements. Naunyn Schmiedebergs Arch. Pharmacol. 373, 204–211 (2006).

    Article  CAS  Google Scholar 

  71. Schock-Kusch, D. et al. Transcutaneous measurement of glomerular filtration rate using FITC-sinistrin in rats. Nephrol. Dial. Transplant. 24, 2997–3001 (2009).

    Article  CAS  Google Scholar 

  72. Rizk, D. V. et al. A novel method for rapid bedside measurement of GFR. J. Am. Soc. Nephrol. 29, 1609–1613 (2018).

    Article  CAS  Google Scholar 

  73. Poreddy, A. R. et al. Exogenous fluorescent tracer agents based on pegylated pyrazine dyes for real-time point-of-care measurement of glomerular filtration rate. Bioorg. Med. Chem. 20, 2490–2497 (2012).

    Article  CAS  Google Scholar 

  74. Huang, H. et al. A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 76, 25–32 (2016).

    Article  CAS  Google Scholar 

  75. Yu, M., Liu, J., Ning, X. & Zheng, J. High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores. Angew. Chem. Int. Ed. 54, 15434–15438 (2015).

    Article  CAS  Google Scholar 

  76. Yu, M. et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew. Chem. Int. Ed. 55, 2787–2791 (2016).

    Article  CAS  Google Scholar 

  77. Huang, J. et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction. Angew. Chem. Int. Ed. 58, 15120–15127 (2019).

    Article  CAS  Google Scholar 

  78. Chen, Y. et al. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 17, 6330–6334 (2017).

    Article  CAS  Google Scholar 

  79. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  CAS  Google Scholar 

  80. Jiang, X., Du, B., Tang, S., Hsieh, J. T. & Zheng, J. Photoacoustic imaging of nanoparticle transport in the kidneys at high temporal resolution. Angew. Chem. Int. Ed. 131, 6055–6061 (2019).

    Article  Google Scholar 

  81. Bonventre, J. V., Vaidya, V. S., Schmouder, R., Feig, P. & Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 28, 436–440 (2010).

    Article  CAS  Google Scholar 

  82. Basile, D. P., Anderson, M. D. & Sutton, T. A. Pathophysiology of acute kidney injury. Compr. Physiol. 2, 1303–1353 (2011).

    Google Scholar 

  83. Karasawa, T. & Steyger, P. S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett. 237, 219–227 (2015).

    Article  CAS  Google Scholar 

  84. Cheng, P. et al. Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury. Adv. Mater. 32, e1908530 (2020). This paper reports the first activatable photoacoustic probe with high renal clearance and a turn-on signal that sensitively detects nephrotoxin-induced kidney injury in a mouse model.

    Article  Google Scholar 

  85. Huang, J., Huang, J., Cheng, P., Jiang, Y. & Pu, K. Near-infrared chemiluminescent reporters for in vivo imaging of reactive oxygen and nitrogen species in kidneys. Adv. Funct. Mater. 30, 2003628 (2020).

    Article  CAS  Google Scholar 

  86. Huang, J. et al. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury. Angew. Chem. Int. Ed. 58, 17796–17804 (2019).

    Article  CAS  Google Scholar 

  87. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209−249 (2020).

  88. Chen, X. & Wong, S. Cancer Theranostics (Academic, 2014).

  89. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  90. Huang, X. et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7, 5684–5693 (2013).

    Article  CAS  Google Scholar 

  91. He, H. et al. Visible and near-infrared dual-emission carbogenic small molecular complex with high RNA selectivity and renal clearance for nucleolus and tumor imaging. ACS Appl. Mater. Interfaces 8, 28529–28537 (2016).

    Article  CAS  Google Scholar 

  92. Li, Y. et al. Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection. Biomaterials 169, 35–44 (2018).

    Article  CAS  Google Scholar 

  93. Yang, J. et al. Gold/alpha-lactalbumin nanoprobes for the imaging and treatment of breast cancer. Nat. Biomed. Eng. 4, 686–703 (2020).

    Article  CAS  Google Scholar 

  94. Hu, D.-H. et al. Hybrid gold–gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale 5, 1624–1628 (2013).

    Article  CAS  Google Scholar 

  95. Li, Q. et al. Activatable polymeric reporter for near-infrared fluorescent and photoacoustic imaging of invasive cancer. Angew. Chem. Int. Ed. 59, 7018–7023 (2020).

    Article  CAS  Google Scholar 

  96. Peng, C. et al. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res. 10, 1366–1376 (2017).

    Article  CAS  Google Scholar 

  97. Chen, F. et al. Ultrasmall renally clearable silica nanoparticles target prostate cancer. ACS Appl. Mater. Interfaces 11, 43879–43887 (2019).

    Article  CAS  Google Scholar 

  98. Sheng, Z. et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv. Mater. 30, e1800766 (2018).

    Article  Google Scholar 

  99. Yan, R. et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly. J. Am. Chem. Soc. 141, 10331–10341 (2019).

    Article  CAS  Google Scholar 

  100. Qi, S. et al. Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors. Bioconjugate Chem. 23, 1149–1156 (2012).

    Article  CAS  Google Scholar 

  101. Pyo, K. et al. Highly luminescent folate-functionalized Au22 nanoclusters for bioimaging. Adv. Healthc. Mater. 6, 1700203 (2017).

    Article  Google Scholar 

  102. Wang, Y., Ma, S., Dai, Z., Rong, Z. & Liu, J. Facile in situ synthesis of ultrasmall near-infrared-emitting gold glyconanoparticles with enhanced cellular uptake and tumor targeting. Nanoscale 11, 16336–16341 (2019).

    Article  CAS  Google Scholar 

  103. Choi, H. S. et al. Design considerations for tumor-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010).

    Article  CAS  Google Scholar 

  104. Song, X. et al. A new class of NIR-II gold nanoclusters based protein biolabels for in vivo tumor-targeted imaging. Angew. Chem. Int. Ed. 60, 1306−1212 (2020).

  105. Zhen, X. et al. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew. Chem. Int. Ed. 57, 7804–7808 (2018).

    Article  CAS  Google Scholar 

  106. Huang, J. et al. Renal-clearable macromolecular reporter for near-infrared fluorescence imaging of bladder cancer. Angew. Chem. Int. Ed. 59, 4415–4420 (2019).

    Article  Google Scholar 

  107. Zhu, S., Tian, R., Antaris, A. L., Chen, X. & Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, e1900321 (2019).

    Article  Google Scholar 

  108. Yang, Q. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater. 29, 1605497 (2017).

    Article  Google Scholar 

  109. Zhang, X. D. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 28, 6872–6879 (2016).

    Article  CAS  Google Scholar 

  110. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016). This paper reports a renal-clearable small-molecular fluorophore with emission in the NIR-II region for cancer imaging.

    Article  CAS  Google Scholar 

  111. Wan, H. et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv. Funct. Mater. 28, 1804956 (2018).

    Article  Google Scholar 

  112. Wang, W. et al. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe. Adv. Mater. 30, 1800106 (2018).

    Article  Google Scholar 

  113. Xu, G. et al. Imaging of colorectal cancers using activatable nanoprobes with second near-infrared window emission. Angew. Chem. Int. Ed. 130, 3688–3692 (2018).

    Article  Google Scholar 

  114. Liu, J. et al. Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. Chem. Sci. 8, 2782–2789 (2017).

    Article  CAS  Google Scholar 

  115. Sun, Y. et al. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proc. Natl Acad. Sci. USA 116, 1968–1973 (2019).

    Article  CAS  Google Scholar 

  116. Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumors depends on size. Nat. Nanotechnol. 6, 815–823 (2011).

    Article  CAS  Google Scholar 

  117. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    Article  CAS  Google Scholar 

  118. Kang, H. et al. Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv. Mater. 28, 8162–8168 (2016).

    Article  CAS  Google Scholar 

  119. Kang, H. et al. Renal clearable theranostic nanoplatforms for gastrointestinal stromal tumors. Adv. Mater. 32, e1905899 (2020).

    Article  Google Scholar 

  120. Peng, C. et al. Tuning the in vivo transport of anticancer drugs using renal-clearable gold nanoparticles. Angew. Chem. Int. Ed. 131, 8567–8571 (2019).

    Google Scholar 

  121. Madajewski, B. et al. Molecular engineering of ultrasmall silica nanoparticle–drug conjugates as lung cancer therapeutics. Clin. Cancer Res. 26, 5424–5437 (2020).

    Article  CAS  Google Scholar 

  122. Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumor growth. Nat. Nanotechnol. 11, 977–985 (2016).

    Article  CAS  Google Scholar 

  123. Jana, D. et al. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl. Mater. Interfaces 12, 18342–18351 (2020).

    Article  CAS  Google Scholar 

  124. Li, Y., Bai, G., Zeng, S. & Hao, J. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS Appl. Mater. Interfaces 11, 4737–4744 (2019).

    Article  CAS  Google Scholar 

  125. Wang, X. et al. Ultrasmall BiOI quantum dots with efficient renal clearance for enhanced radiotherapy of cancer. Adv. Sci. 7, 1902561 (2020).

    Article  CAS  Google Scholar 

  126. Chen, Q. et al. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials 35, 8206–8214 (2014).

    Article  CAS  Google Scholar 

  127. Liang, G., Jin, X., Qin, H. & Xing, D. Glutathione-capped, renal-clearable CuS nanodots for photoacoustic imaging and photothermal therapy. J. Mater. Chem. B 5, 6366–6375 (2017).

    Article  CAS  Google Scholar 

  128. Zhao, B. & He, Y.-Y. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev. Anticancer Ther. 10, 1797–1809 (2010).

    Article  CAS  Google Scholar 

  129. Lou, P.-J., Jones, L. & Hopper, C. Clinical outcomes of photodynamic therapy for head-and-neck cancer. Technol. Cancer Res. Treat. 2, 311–317 (2003).

    Article  CAS  Google Scholar 

  130. Wang, H. et al. Renal-clearable porphyrinic metal-organic framework nanodots for enhanced photodynamic therapy. ACS Nano 13, 9206–9217 (2019).

    Article  CAS  Google Scholar 

  131. Li, P. et al. Ultrasmall MoS2 nanodots-doped biodegradable SiO2 nanoparticles for clearable FL/CT/MSOT imaging-guided PTT/PDT combination tumor therapy. ACS Appl. Mater. Interfaces 11, 5771–5781 (2019).

    Article  CAS  Google Scholar 

  132. Siwawannapong, K. et al. Ultra-small pyropheophorbide-a nanodots for near-infrared fluorescence/photoacoustic imaging-guided photodynamic therapy. Theranostics 10, 62–73 (2020).

    Article  CAS  Google Scholar 

  133. Vahrmeijer, A. L., Hutteman, M., Van Der Vorst, J. R., Van De Velde, C. J. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  CAS  Google Scholar 

  134. Nguyen, Q. T. & Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat. Rev. Cancer 13, 653–662 (2013).

    Article  CAS  Google Scholar 

  135. US Food and Drug Administration. Drug approval package: fluorescite (fluorescein) NDA #021980 (FDA, 2006).

  136. Electronic Medicines Compendium. Fluorescein sodium 100 mg/ml, solution for injection (EMC, 2018).

  137. US Food and Drug Administration. Drug approval package: ProvayBlue (methylene blue injection) (FDA, 2016).

  138. US Food and Drug Administration. Drug approval package: Gleolan (aminolevulinic acid hydrochloride) (FDA, 2017).

  139. US Food and Drug Administration. Briefing package: 5-aminolevulinic acid hydrochloride (5-ALA HCl) (FDA, 2017).

  140. Hernot, S., van Manen, L., Debie, P., Mieog, J. S. D. & Vahrmeijer, A. L. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 20, e354–e367 (2019).

    Article  CAS  Google Scholar 

  141. Bradbury, M. S. et al. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr. Biol. 5, 74–86 (2013). This paper reports clinical trials of renal-clearable Cornell dots for intraoperative image-guided surgery of metastatic melanoma.

    Article  CAS  Google Scholar 

  142. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl Med. 6, 260ra149 (2014).

    Article  Google Scholar 

  143. Mukherjee, A., Kharkwal, S. & Charak, K. Assessment of the efficacy and safety of methylene blue dye for sentinel lymph node mapping in early breast cancer with clinically negative axilla. Arch. Surg. 4, 6–10 (2014).

    Article  Google Scholar 

  144. Hyun, H. et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 21, 192–197 (2015).

    Article  CAS  Google Scholar 

  145. de Valk, K. S. et al. A zwitterionic near-infrared fluorophore for real-time ureter identification during laparoscopic abdominopelvic surgery. Nat. Commun. 10, 3118 (2019).

    Article  Google Scholar 

  146. Zhang, R. R. et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 14, 347–364 (2017).

    Article  CAS  Google Scholar 

  147. de Valk, K. S. et al. First-in-human assessment of cRGD-ZW800-1, a zwitterionic, integrin-targeted, near-infrared fluorescent peptide in colon carcinoma. Clin. Cancer Res. 26, 3990–3998 (2020). This paper reports clinical trials of renal-clearable cRGD-ZW800-1 for intraoperative image-guided surgery of colon cancer.

    Article  Google Scholar 

  148. Chen, F. et al. Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci. Adv. 5, eaax5208 (2019).

    Article  CAS  Google Scholar 

  149. Veiseh, M. et al. Tumor paint: a chlorotoxin: Cy5. 5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res. 67, 6882–6888 (2007).

    Article  CAS  Google Scholar 

  150. R Stroud, M., J Hansen, S. & M Olson, J. In vivo bio-imaging using chlorotoxin-based conjugates. Curr. Pharm. Des. 17, 4362–4371 (2011).

    Article  Google Scholar 

  151. Kelly, K., Alencar, H., Funovics, M., Mahmood, U. & Weissleder, R. Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res. 64, 6247–6251 (2004).

    Article  CAS  Google Scholar 

  152. Whitney, M. A. et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol. 29, 352–356 (2011).

    Article  CAS  Google Scholar 

  153. Jiang, T. et al. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl Acad. Sci. USA 101, 17867–17872 (2004).

    Article  CAS  Google Scholar 

  154. Nguyen, Q. T. et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc. Natl Acad. Sci. USA 107, 4317–4322 (2010).

    Article  CAS  Google Scholar 

  155. Smith, B. L. et al. Real-time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin-activated fluorescent imaging system. Breast Cancer Res. Treat. 171, 413–420 (2018).

    Article  Google Scholar 

  156. Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl Med. 8, 320ra324 (2016).

    Article  Google Scholar 

  157. Onda, N., Kemmochi, S., Morita, R., Ishihara, Y. & Shibutani, M. In vivo imaging of tissue-remodeling activity involving infiltration of macrophages by a systemically administered protease-activatable probe in colon cancer tissues. Transl. Oncol. 6, 628 (2013).

    Article  Google Scholar 

  158. Simerville, J. A., Maxted, W. C. & Pahira, J. J. Urinalysis: a comprehensive review. Am. Fam. Phys. 71, 1153–1162 (2005).

    Google Scholar 

  159. Helen, L. S. et al. Diagnostic accuracy of self-administered urine glucose test strips as a diabetes screening tool in a low-resource setting in Cambodia. BMJ Open 8, e019924 (2018).

    Article  Google Scholar 

  160. Kwon, E. J., Dudani, J. S. & Bhatia, S. N. Ultrasensitive tumor-penetrating nanosensors of protease activity. Nat. Biomed. Eng. 1, 0054 (2017).

    Article  CAS  Google Scholar 

  161. Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14, 883–890 (2019). This paper reports the application of renal-clearable catalytic gold nanoclusters for noninvasive urinalysis of colorectal cancer in mice.

    Article  CAS  Google Scholar 

  162. Mac, Q. D. et al. Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity. Nat. Biomed. Eng. 3, 281 (2019).

    Article  CAS  Google Scholar 

  163. Dieterle, F. et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 28, 463 (2010).

    Article  CAS  Google Scholar 

  164. Kwong, G. A. et al. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31, 63–70 (2013).

    Article  CAS  Google Scholar 

  165. Warren, A. D., Kwong, G. A., Wood, D. K., Lin, K. Y. & Bhatia, S. N. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl Acad. Sci. USA 111, 3671–3676 (2014).

    Article  CAS  Google Scholar 

  166. Kaneda, Y. et al. The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials 25, 3259–3266 (2004).

    Article  CAS  Google Scholar 

  167. Zhou, Y. et al. A phosphorus phthalocyanine formulation with intense absorbance at 1000 nm for deep optical imaging. Theranostics 6, 688 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.P. thanks Nanyang Technological University (start-up grant M4081627) and Singapore Ministry of Education, Academic Research Fund Tier 1 (2019-T1-002-045, RG125/19), Academic Research Fund Tier 2 (MOE2018-T2-2-042) and the Agency for Science, Technology and Research (the AME Programmatic Grant SERC A18A8b0059) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to writing this article.

Corresponding author

Correspondence to Kanyi Pu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Pu, K. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat Rev Mater 6, 1095–1113 (2021). https://doi.org/10.1038/s41578-021-00328-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00328-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research