Skip to main content
Log in

Preconditioned method for the nonlinear complex Ginzburg–Landau equations

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this work, we give an effective preconditioned numerical method to solve the discretized linear system, which is obtained from the space fractional complex Ginzburg–Landau equations. The coefficient matrix of the linear system is the sum of a symmetric tridiagonal matrix and a complex Toeplitz matrix. The preconditioned iteration method has computational superiority since we can use the fast Fourier transform and the circulant preconditioner to solve the discretized linear system. Numerical examples are tested to illustrate the advantage of the proposed preconditioned numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, P., & Huang, C. (2018). An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg–Landau equation. BIT, 58, 783–805.

    Article  MathSciNet  Google Scholar 

  2. Zhang, L., Zhang, Q., & Sun, H. W. (2020). Exponential Runge–Kutta method for two-dimensional nonlinear fractional complex Ginzburg–Landau equations. Journal of Scientific Computing. https://doi.org/10.1007/s10915-020-01240-x.

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, Q., Lin, X., Pan, K., & Ren, Y. (2020). Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg–Landau equation. The Journal of Computational and Applied Mathematics, 80, 1201–1220.

    Article  MathSciNet  Google Scholar 

  4. Zhang, Q., Zhang, L., & Sun, H. W. (2021). A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations. Journal of Computational and Applied Mathematics, 389, 113355.

    Article  MathSciNet  Google Scholar 

  5. Zhang, M., Zhang, G. F., & Liao, L. D. (2019). Fast iterative solvers and simulation for the space fractional Ginzburg–Landau equations. The Journal of Computational and Applied Mathematics, 78, 1793–1800.

    Article  MathSciNet  Google Scholar 

  6. Podlubny, I. (1999). Fractional differential equations. New York: Academic Press.

    MATH  Google Scholar 

  7. Milovanov, A., & Rasmussen, J. (2005). Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media. Physics Letters A, 337, 75–80.

    Article  Google Scholar 

  8. Mvogo, A., Tambue, A., Ben-Bolie, G., & Kofane, T. (2016). Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg–Landau equation. Communications in Nonlinear Science, 39, 396–410.

    Article  MathSciNet  Google Scholar 

  9. Tarasov, V., & Zaslavsky, G. (2005). Fractional Ginzburg–Landau equation for fractal media. Physica A, 354, 249–261.

    Article  Google Scholar 

  10. Guo, B.-L., & Huo, Z.-H. (2012). Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg–Landau equation. Fractional Calculus and Applied Analysis, 16(1), 226–242.

    Article  Google Scholar 

  11. Wang, P., & Huang, C. (2016). An implicit midpoint difference scheme for the fractional Ginzburg–Landau equation. Journal of Computational Physics, 312, 31–49.

    Article  MathSciNet  Google Scholar 

  12. He, D., & Pan, K. (2018). An unconditionally stable linearized difference scheme for the fractional Ginzburg–Landau equation. The Numerical Algorithms, 79, 899–925.

    Article  MathSciNet  Google Scholar 

  13. Pu, X., & Guo, B. (2013). Well-posedness and dynamics for the fractional Ginzburg–Landau equation. Applied Analysis, 92, 318–334.

    Article  MathSciNet  Google Scholar 

  14. Huo, L., Jiang, D., Qi, S., et al. (2019). An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS.

  15. Jiang, D., Wang, W., Shi, L., et al. (2018). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 5(3), 1–12.

    Google Scholar 

  16. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE, 13(5), 1–23.

    Google Scholar 

  17. Qi, S., Jiang, D., & Huo, L. (2019). A prediction approach to end-to-end traffic in space information networks. Mobile Networks and Applications, Mobile Networks and Applications, 1, 1–10.

    Google Scholar 

  18. Wang, Y., Jiang, D., Huo, L., et al. (2019). A new traffic prediction algorithm to software defined networking. Mobile Networks and Applications 1–10.

  19. Hao, Z.-P., Sun, Z.-Z., & Cao, W.-R. (2015). A fourth-order approximation of fractional derivatives with its applications. Journal of Computational Physics, 281, 787–805.

    Article  MathSciNet  Google Scholar 

  20. Meerschaert, M.-M., & Tadjeran, C. (2004). Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics, 172, 65–77.

    Article  MathSciNet  Google Scholar 

  21. Saad, Y. (2003). Iterative methods for sparse linear systems. Philadelphia: SIAM.

    Book  Google Scholar 

  22. Chan, R., & Jin, X. (2007). An introduction to iterative toeplitz solvers. Philadelphia: SIAM.

    Book  Google Scholar 

Download references

Funding

Supported by Training Program from Xuzhou University of Technology (Grant Number XKY2019104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 265KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, L. & Zhou, W. Preconditioned method for the nonlinear complex Ginzburg–Landau equations. Wireless Netw 27, 3701–3708 (2021). https://doi.org/10.1007/s11276-021-02657-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02657-4

Keywords

Navigation