Skip to main content
Log in

Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Tempered fractional Laplacian is the generator of the tempered isotropic Lévy process. This paper provides the finite difference discretization for the two-dimensional tempered fractional Laplacian by using the weighted trapezoidal rule and the bilinear interpolation. Then it is used to solve the tempered fractional Poisson equation with homogeneous Dirichlet boundary condition and the error estimate is also derived. Numerical experiments verify the predicted convergence rates and effectiveness of the schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2D homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74, 784–816 (2017)

    Article  MathSciNet  Google Scholar 

  2. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)

    Article  MathSciNet  Google Scholar 

  3. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, UK Cambridge (2009)

    Book  Google Scholar 

  4. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, UK Cambridge (1996)

    MATH  Google Scholar 

  5. Bogdan, K., Burdzy, K., Chen, Z.Q.: Censored stable process. Probab. Theory Relat. 127, 89–152 (2003)

    Article  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, New York (2008)

  7. Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new nonlocal principle. SIAM Rev. 52, 113–147 (2010)

    Article  MathSciNet  Google Scholar 

  8. Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, UK Cambridge (2005)

    Book  Google Scholar 

  9. Deng, W.H., Li, B.Y., Tian, W.Y., Zhang, P.W.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16, 125–149 (2018)

    Article  MathSciNet  Google Scholar 

  10. Deng, W.H., Wu, X.C., Wang, W.L.: Mean exit time and escape probability for the anomalous processes with the tempered power-law waiting times. EPL 117, 10009 (2017)

    Article  Google Scholar 

  11. Duo, S.W., Wyk, H.W.V., Zhang, Y.Z.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    Article  MathSciNet  Google Scholar 

  12. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gunzburger, M., Li, B.Y., Wang, J.L.: Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comput. 88, 1715–1741 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co., New Jeasy (2000)

    Book  Google Scholar 

  15. Huang, Y.H., Oberman, A.: Finite difference methods for fractional Laplacians. in press (arXiv:1611.00164v1. [math.NA])

  16. Huang, Y.H., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)

    Article  MathSciNet  Google Scholar 

  17. Klafter, J., Sokolov, I.M.: Anomalous diffusion spreads its wings. Phys. world 18, 29–32 (2005)

    Article  Google Scholar 

  18. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, 7–51 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribtion. Phys. A. 287, 468–481 (2000)

    Article  Google Scholar 

  20. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  21. Mößner, B., Reif, U.: Error bounds for polynomial tensor product interpolation. Computing 89, 185–197 (2009)

    Article  MathSciNet  Google Scholar 

  22. Pozrikidis, C.: The Fractional Laplacian. CRC Press, London (2016)

    Book  Google Scholar 

  23. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, New Jersey Princeton (1970)

    MATH  Google Scholar 

  24. Zhang, Z.J., Deng, W.H., Fan, H.T.: Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theor. Meth. Appl. 12, 492–516 (2019)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Z.J., Deng, W.H., Karniadakis, G.E.: A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal. 56, 3010–3039 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Additional information

Communicated by Jan Hesthaven.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant No. 12071195, the AI and Big Data Funds under Grant No. 2019620005000775, and the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2021-it26.

Appendices

Appendix

Fig. 5
figure 5

Division of the integral region for a fixed point (xy)

Numerically calculating \((\varDelta +\lambda )^{\frac{\beta }{2}}\) performed on a given function

According to the equation \(-(\varDelta +\lambda )^{\frac{\beta }{2}} u(x,y)=f(x,y)\), we can compute \(-(\varDelta +\lambda )^{\frac{\beta }{2}} u(x,y)\) to get the source term f(xy). Since the singularity and non-locality of \(-(\varDelta +\lambda )^{\frac{\beta }{2}} u(x,y)\), one can’t directly approximate it by the trapezoidal rule. Now we provide the technique to calculate it. For a fixed point (xy), we denote

$$\begin{aligned} \begin{aligned}&r_1=\sup _{\begin{array}{c} (\xi ,\eta )\in \partial \varOmega \end{array}}\max (|x-\xi |,|y-\eta |),\\&r_2=\inf _{\begin{array}{c} (\xi ,\eta )\in \partial \varOmega \end{array}}\sqrt{(x-\xi )^2+(y-\eta )^2}. \end{aligned} \end{aligned}$$

Without loss of generality, we set \(\varOmega =(-1,1)\times (-1,1)\). For any \((x,y)\in \varOmega \), we denote \(A_1\) as a square whose length is \(2r_1\) and center point is (xy) and \(A_2\) as a square whose length is \(2r_2\) and center point is (xy). To compute the source term f(xy), we divide the domain into four parts, i.e., \({\mathbb {R}}\times {\mathbb {R}}=({\mathbb {R}}\times {\mathbb {R}})\backslash A_1\bigcup (A_1\backslash \varOmega )\bigcup (\varOmega \backslash A_2)\bigcup A_2\), shown in Fig. 5.

For the term

$$\begin{aligned} \int \int _{({\mathbb {R}}\times {\mathbb {R}})\backslash (A_1)}\frac{u(\xi ,\eta )-u(x,y)}{e^{\lambda \sqrt{(x-\xi )^2+(y-\eta )^2}}\left( \sqrt{(x-\xi )^2+(y-\eta )^2}\right) ^{{2+\beta }}}d\xi d\eta , \end{aligned}$$
(A.1)

since \(\mathbf{supp }~u(x,y)\subset \varOmega \), (A.1) can be rewritten as

$$\begin{aligned} -u(x,y)\int \int _{({\mathbb {R}}\times {\mathbb {R}})\backslash (A_1)}\frac{1}{e^{\lambda \sqrt{(x-\xi )^2+(y-\eta )^2}}\left( \sqrt{(x-\xi )^2+(y-\eta )^2}\right) ^{{2+\beta }}}d\xi d\eta . \end{aligned}$$

Next, we establish polar coordinates at point (xy) and let \(x-\xi =r\cos (\theta )\), \(y-\eta =r\sin (\theta )\). Then, by simple calculations, we can obtain

$$\begin{aligned} \begin{aligned}&\int \int _{({\mathbb {R}}\times {\mathbb {R}})\backslash (A_1)}\frac{1}{e^{\lambda \sqrt{(x-\xi )^2+(y-\eta )^2}}\left( \sqrt{(x-\xi )^2+(y-\eta )^2}\right) ^{{2+\beta }}}d\xi d\eta \\&\quad =\int _{0}^{\frac{\pi }{4}}\int _{\frac{r_1}{\cos (\theta )}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta +\int _{\frac{\pi }{4}}^{\frac{2\pi }{4}}\int _{\frac{r_1}{\cos (\frac{\pi }{2}-\theta )}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta \\&\qquad +\int _{\frac{2\pi }{4}}^{\frac{3\pi }{4}}\int _{\frac{r_1}{\cos (\theta -\frac{\pi }{2})}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta +\int _{\frac{3\pi }{4}}^{\frac{4\pi }{4}}\int _{\frac{r_1}{\cos (\pi -\theta )}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta \\&\qquad +\int _{\frac{4\pi }{4}}^{\frac{5\pi }{4}}\int _{\frac{r_1}{\cos (\theta -\pi )}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta +\int _{\frac{5\pi }{4}}^{\frac{6\pi }{4}}\int _{\frac{r_1}{\cos (\frac{3\pi }{2}-\theta )}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta \\&\qquad +\int _{\frac{6\pi }{4}}^{\frac{7\pi }{4}}\int _{\frac{r_1}{\cos (\theta -\frac{3\pi }{2})}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta +\int _{\frac{7\pi }{4}}^{\frac{8\pi }{4}}\int _{\frac{r_1}{\cos (2\pi -\theta )}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta \\&\quad =8\int _{0}^{\frac{\pi }{4}}\int _{\frac{r_1}{\cos (\theta )}}^{\infty }\frac{1}{r^{1+\beta }e^{\lambda r}}dr d\theta . \end{aligned} \end{aligned}$$
(A.2)

When \(\lambda =0\) for (A.2), we have

$$\begin{aligned} \begin{aligned} 8\int _{0}^{\frac{\pi }{4}}\int _{\frac{r_1}{\cos (\theta )}}^{\infty }\frac{1}{r^{1+\beta }}dr d\theta =\frac{8}{\beta }\int _{0}^{\frac{\pi }{4}}\left( \frac{r_1}{\cos (\theta )}\right) ^{-\beta }d\theta . \end{aligned} \end{aligned}$$

We just approximate it by the trapezoidal rule in a finite interval. When \(\lambda \ne 0\), we approximate (A.2) by the function ‘integral2.m’ in MATLAB.

For the term

$$\begin{aligned} \int \int _{A_2}\frac{u(\xi ,\eta )-u(x,y)}{e^{\lambda \sqrt{(x-\xi )^2+(y-\eta )^2}}\left( \sqrt{(x-\xi )^2+(y-\eta )^2}\right) ^{{2+\beta }}}d\xi d\eta , \end{aligned}$$

using its symmetry leads to

$$\begin{aligned} \begin{aligned}&\int \int _{A_2}\frac{u(\xi ,\eta )-u(x,y)}{e^{\lambda \sqrt{(x-\xi )^2+(y-\eta )^2}}\left( \sqrt{(x-\xi )^2+(y-\eta )^2}\right) ^{{2+\beta }}}d\xi d\eta \\&\quad =\int _{-r_2}^{r_2}\int _{-r_2}^{r_2}\frac{u(x+\xi ,y+\eta )-u(x,y)}{e^{\lambda \sqrt{\xi ^2+\eta ^2}}\left( \sqrt{\xi ^2+\eta ^2}\right) ^{{2+\beta }}}d\xi d\eta \\&\quad =\int _{0}^{r_2}\int _{0}^{r_2}\frac{u(x+\xi ,y+\eta )+u(x-\xi ,y-\eta )+u(x+\xi ,y-\eta )+u(x-\xi ,y+\eta ) -4u(x,y)}{e^{\lambda \sqrt{\xi ^2+\eta ^2}}\left( \sqrt{\xi ^2+\eta ^2}\right) ^{{2+\beta }}}d\xi d\eta . \end{aligned} \end{aligned}$$
(A.3)

Because of the weak singularity, we try to compute it in polar coordinates. Let \(\xi =r\cos (\theta )\), \(\eta =r\sin (\theta )\). Then (A.3) can be rewritten as

$$\begin{aligned} \begin{aligned}&\int \int _{A_2}\frac{u(\xi ,\eta )-u(x,y)}{e^{\lambda \sqrt{(x-\xi )^2+(y-\eta )^2}}\left( \sqrt{(x-\xi )^2+(y-\eta )^2}\right) ^{{2+\beta }}}d\xi d\eta \\&\quad =\int _{0}^{\frac{\pi }{4}}\int _{0}^{\frac{r_2}{\cos (\theta )}}(u(x+r\cos (\theta ),y+r\sin (\theta ))+u(x-r\cos (\theta ),y+r\sin (\theta ))\\&\qquad +u(x+r\cos (\theta ),y-r\sin (\theta ))+u(x-r\cos (\theta ),y-r\sin (\theta ))\\&\qquad -4u(x,y))r^{-1-\beta }e^{-\lambda r}dr d\theta \\&\qquad +\int _{\frac{\pi }{4}}^{\frac{2\pi }{4}}\int _{0}^{\frac{r_2}{\cos (\frac{\pi }{2}-\theta )}}\left( u(x+r\cos (\theta ),y+r\sin (\theta ))+u(x-r\cos (\theta ),y+r\sin (\theta ))\right. \\&\qquad +u(x+r\cos (\theta ),y-r\sin (\theta ))+u(x-r\cos (\theta ),y-r\sin (\theta ))\\&\qquad -4u(x,y))r^{-1-\beta }e^{-\lambda r}dr d\theta . \end{aligned} \end{aligned}$$
(A.4)

In (A.4), for some special function, such as \(u(x,y)=(1-x^2)^2(1-y^2)^2\), we can expand it as

$$\begin{aligned} \begin{aligned}&(u(x+r\cos (\theta ),y+r\sin (\theta ))+u(x-r\cos (\theta ),y+r\sin (\theta ))\\&\qquad +u(x+r\cos (\theta ),y-r\sin (\theta ))+u(x-r\cos (\theta ),y-r\sin (\theta ))-4u(x,y))r^{-1-\beta }e^{-\lambda r}\\&\quad =4 r^{1-\beta }e^{-\lambda r} (r^6 \sin ^4(\theta ) \cos ^4(\theta )+6 r^4 x^2 \sin ^4(\theta ) \cos ^2(\theta )+6 r^4 y^2 \sin ^2(\theta ) \cos ^4(\theta )\\&\qquad -2 r^4 \sin ^2(\theta ) \cos ^4(\theta )\\&\qquad -2 r^4 \sin ^4(\theta ) \cos ^2(\theta )+r^2 x^4 \sin ^4(\theta )+36 r^2 x^2 y^2 \sin ^2(\theta ) \cos ^2(\theta )-2 r^2 x^2 \sin ^4(\theta )\\&\qquad -12 r^2 x^2 \sin ^2(\theta ) \cos ^2(\theta )+r^2 y^4 \cos ^4(\theta )-2 r^2 y^2 \cos ^4(\theta )-12 r^2 y^2 \sin ^2(\theta ) \cos ^2(\theta )\\&\qquad +r^2 \sin ^4(\theta )+r^2 \cos ^4(\theta )+4 r^2 \sin ^2(\theta ) \cos ^2(\theta )\\&\qquad +6 x^4 y^2 \sin ^2(\theta )-2 x^4 \sin ^2(\theta )+6 x^2 y^4 \cos ^2(\theta )\\&\qquad -12 x^2 y^2 \sin ^2(\theta )-12 x^2 y^2 \cos ^2(\theta )+4 x^2 \sin ^2(\theta )\\&\qquad +6 x^2 \cos ^2(\theta )-2 y^4 \cos ^2(\theta )+6 y^2 \sin ^2(\theta )\\&\qquad +4 y^2 \cos ^2(\theta )-2 \sin ^2(\theta )-2 \cos ^2(\theta )). \end{aligned} \end{aligned}$$

For (A.4), the inner integration about r can be calculated analytically when \(\lambda =0\), so we approximate the outer integration about \(\theta \) by the trapezoidal rule; when \(\lambda \ne 0\), we can transform the inner integration about r to a nonsingular numerical integration by virtue of integration by parts.

For another two terms,

$$\begin{aligned} \int \int _{(A_1\backslash \varOmega )\bigcup (\varOmega \backslash A_2)}\frac{u(\xi ,\eta )-u(x,y)}{e^{\lambda \sqrt{(x-\xi )^2+(y-\eta )^2}}\left( \sqrt{(x-\xi )^2+(y-\eta )^2}\right) ^{2+\beta }}d\xi d\eta , \end{aligned}$$

we get them by the trapezoidal rule directly.

Weights of approximating tempered fractional Laplacian

$$\begin{aligned} w_{i,j}=-c_{2,\beta }\left\{ \begin{aligned}&-4\left( \frac{\frac{k_\gamma }{4}G_{0,0}+W^1_{1,1}+W^2_{1,1}+W^3_{1,1}}{e^{\lambda \sqrt{\xi _1^2+\eta _1^2}}\left( \sqrt{\xi _1^2+\eta _1^2}\right) ^\gamma }\right. \\&~~~~~~ +\frac{\frac{k_\gamma }{4}G_{0,0}+W^1_{1,0}}{e^{\lambda \sqrt{\xi _1^2+\eta _0^2}}\left( \sqrt{\xi _1^2+\eta _0^2}\right) ^\gamma }+\frac{\frac{k_\gamma }{4}G_{0,0}+W^1_{0,1}}{e^{\lambda \sqrt{\xi _0^2+\eta _1^2}}\left( \sqrt{\xi _0^2+\eta _1^2}\right) ^\gamma }\\&~~~~~~ +\sum _{i=2}^{N-1}\frac{W^1_{i,0}+W^2_{i,0}}{e^{\lambda \sqrt{\xi _i^2+\eta _0^2}}\left( \sqrt{\xi _i^2+\eta _0^2}\right) ^\gamma }+\sum _{j=2}^{N-1}\frac{W^1_{0,j}+W^3_{0,j}}{e^{\lambda \sqrt{\xi _0^2+\eta _j^2}}\left( \sqrt{\xi _0^2+\eta _j^2}\right) ^\gamma }\\&~~~~~~ +\sum _{i=1}^{N-1}\frac{W^3_{i,N}+W^4_{i,N}}{e^{\lambda \sqrt{\xi _i^2+\eta _{N}^2}}\left( \sqrt{\xi _i^2+\eta _{N}^2}\right) ^\gamma }+\sum _{j=1}^{N-1}\frac{W^2_{N,j}+W^4_{N,j}}{e^{\lambda \sqrt{\xi _{N}^2+\eta _j^2}}\left( \sqrt{\xi _{N}^2+\eta _j^2}\right) ^\gamma }\\&~~~~~~+\sum _{i=1,j=1; (i,j)\ne (1,1)}^{i=N-1,j=N-1}\frac{W^1_{i,j}+W^2_{i,j}+W^3_{i,j}+W^4_{i,j}}{e^{\lambda \sqrt{\xi _{i}^2+\eta _j^2}}\left( \sqrt{\xi _{i}^2+\eta _j^2}\right) ^\gamma }\\&~~~~~~ +\frac{W^3_{0,N}}{e^{\lambda \sqrt{\xi _0^2+\eta _{N}^2}}\left( \sqrt{\xi _0^2 +\eta _{N}^2}\right) ^\gamma }+\frac{W^2_{N,0}}{e^{\lambda \sqrt{\xi _{N}^2+\eta _0^2}}\left( \sqrt{\xi _{N}^2+\eta _0^2}\right) ^\gamma }\\&~~~~~~\left. +\frac{W^4_{N,N}}{e^{\lambda \sqrt{\xi _{N}^2+\eta _{N}^2}}\left( \sqrt{\xi _{N}^2+\eta _{N}^2}\right) ^\gamma }+G^\infty \right) ,&i=0,j=0,\\&\frac{\frac{k_\gamma }{4}G_{0,0}+W^1_{1,1}+W^2_{1,1}+W^3_{1,1}}{e^{\lambda \sqrt{\xi _1^2+\eta _1^2}}\left( \sqrt{\xi _1^2+\eta _1^2}\right) ^\gamma },&i=1,j=1,\\&2\frac{\frac{k_\gamma }{4}G_{0,0}+W^1_{1,0}}{e^{\lambda \sqrt{\xi _1^2+\eta _0^2}}\left( \sqrt{\xi _1^2+\eta _0^2}\right) ^\gamma },&i=1,j=0,\\&2\frac{\frac{k_\gamma }{4}G_{0,0}+W^1_{0,1}}{e^{\lambda \sqrt{\xi _0^2+\eta _1^2}}\left( \sqrt{\xi _0^2+\eta _1^2}\right) ^\gamma },&i=0,j=1,\\&2\frac{W^1_{i,0}+W^2_{i,0}}{e^{\lambda \sqrt{\xi _i^2+\eta _0^2}}\left( \sqrt{\xi _i^2+\eta _0^2}\right) ^\gamma ,}&1<i<N,j=0,\\&2\frac{W^1_{0,j}+W^3_{0,j}}{e^{\lambda \sqrt{\xi _0^2+\eta _j^2}}\left( \sqrt{\xi _0^2+\eta _j^2}\right) ^\gamma },&i=0, 1<j<N,\\&\frac{W^3_{i,N}+W^4_{i,N}}{e^{\lambda \sqrt{\xi _i^2+\eta _{N}^2}}\left( \sqrt{\xi _i^2+\eta _{N}^2}\right) ^\gamma },&1\le i<N,j=N,\\&\frac{W^2_{N,j}+W^4_{N,j}}{e^{\lambda \sqrt{\xi _{N}^2+\eta _j^2}}\left( \sqrt{\xi _{N}^2+\eta _j^2}\right) ^\gamma },&i=N, 1\le j<N,\\&2\frac{W^3_{0,N}}{e^{\lambda \sqrt{\xi _{0}^2+\eta _{N}^2}}\left( \sqrt{\xi _{0}^2+\eta _{N}^2}\right) ^\gamma },&i=0,j=N,\\&2\frac{W^2_{N,0}}{e^{\lambda \sqrt{\xi _{N}^2+\eta _0^2}}\left( \sqrt{\xi _{N}^2+\eta _0^2}\right) ^\gamma },&i=N,j=0,\\&\frac{W^4_{N,N}}{e^{\lambda \sqrt{\xi _{N}^2+\eta _{N}^2}}\left( \sqrt{\xi _{N}^2+\eta _{N}^2}\right) ^\gamma },&i=N,j=N,\\&\frac{W^1_{i,j}+W^2_{i,j}+W^3_{i,j}+W^4_{i,j}}{e^{\lambda \sqrt{\xi _{i}^2+\eta _j^2}}\left( \sqrt{\xi _{i}^2+\eta _j^2}\right) ^\gamma },&\mathrm{otherwise}. \end{aligned} \right. \end{aligned}$$
(B.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Nie, D. & Deng, W. Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. Bit Numer Math 61, 1421–1452 (2021). https://doi.org/10.1007/s10543-021-00860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00860-5

Keywords

Mathematics Subject Classification

Navigation