Skip to main content
Log in

Constrained Lagrangian dynamics based on reduced quasi-velocities and quasi-forces

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a formulation of Lagrangian dynamics of constrained mechanical systems in terms of reduced quasi-velocities and quasi-forces that can be used for simulation, analysis, and control purposes. In this formulation, a Cholesky decomposition of the mass matrix in conjunction with adequate orthogonal matrices is used to define reduced-quasi-velocities, input quasi-forces, and constraint quasi-forces which possess natural metric. The new state and input variables always have homogeneous units despite the generalized coordinates may involve in both translational and rotational components and the constraint wrench may involve in both force and moment components. Therefore, this formulation is inherently invariant with respect to changes in dimensional units without requiring weighting matrices. Moreover, in this formulation the equations of motion are completely decoupled from those of the constrained force. This allows the possibility of a simple force control action that is totally independent of the motion control action facilitating a hybrid force/motion control. The properties of the new dynamics formulation are investigated and subsequently force/motion tracking control and regulation of constrained multibody systems based on quasi-velocities and quasi-forces are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lipkin, H., Duffy, J.: Hybrid twist and wrench control for a robotic manipulator. J. Mech. Transm. Autom. Des. 110, 138–144 (1988)

    Article  Google Scholar 

  2. Manes, C.: Recovering model consistence for force and velocity measures in robot hybrid control. In: IEEE Int. Conference on Robotics & Automation, Nice, France, pp. 1276–1281 (1992)

    Google Scholar 

  3. Luca, A.D., Manes, C.: Modeling of robots in contact with a dynamic environment. IEEE Trans. Robot. Autom. 10(4), 542–548 (1994)

    Article  Google Scholar 

  4. Aghili, F., Piedbœuf, J.-C.: Simulation of motion of constrained multibody systems based on projection operator. J. Multibody Syst. Dyn. 10, 3–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angeles, J.: A methodology for the optimum dimensioning of robotic manipulators. In: UASLP, San Luis Potosí, SLP, México: Memoria del 5o. Congreso Mexicano de Robótica, pp. 190–203 (2003)

    Google Scholar 

  6. Aghili, F.: A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: applications to control and simulation. IEEE Trans. Robot. 21(5), 834–849 (2005)

    Article  Google Scholar 

  7. Aghili, F.: Non-minimal order model of mechanical systems with redundant constraints for simulations and controls. IEEE Trans. Autom. Control 61(5), 1350–1355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. McClamroch, N.H., Wang, D.: Feedback stabilization and tracking of constrained robots. IEEE Trans. Autom. Control 33(5), 419–426 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brogliato, B., Niculescu, S., Orhant, P.: On the control of finite-dimensional mechanical systems with unilateral constraints. IEEE Trans. Autom. Control 42(2), 200–215 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brogliato, B.: Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction. Multibody Syst. Dyn. 32(2), 175–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brogliato, B.: Nonsmooth Impact Mechanics, Models, Dynamics and Control, 1st edn. Springer, New York (1996)

    MATH  Google Scholar 

  12. Brogliato, B.: Nonsmooth Mechanics, Models, Dynamics and Control, 3rd edn. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  13. Kodischeck, D.E.: Robot kinematics and coordinate transformation. In: IEEE Int. Conf. on Decision and Control, Lauderdale, FL, pp. 1–4 (1985)

    Google Scholar 

  14. Gu, Y.L., Loh, N.K.: Control system modeling by using of a canonical transformation. In: IEEE Conference on Decision and Control, Lauderdale, FL, pp. 1–4 (1987)

    Google Scholar 

  15. Bedrossian, N.S.: Linearizing coordinate transformation and Riemann curvature. In: IEEE Int. Conf. on Decision and Control, Tucson, Arizona, pp. 80–85 (1992)

    Google Scholar 

  16. Spong, M.W.: Remarks on robot dynamics: canonical transformations and Riemannian geometry. In: IEEE Int. Conference on Robotics & Automation, Nice, France, pp. 554–559 (1992)

    Google Scholar 

  17. Rodriguez, G., Kertutz-Delgado, K.: Spatial operator factorization and inversion of manipulator mass matrix. IEEE Trans. Robot. Autom. 8(1), 65–76 (1992)

    Article  Google Scholar 

  18. Aghili, F.: Modelling and analysis of multiple impacts in multibody systems under unilateral and bilateral constrains based on linear projection operators. Multibody Syst. Dyn. 46(1), 41–62 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Aghili, F.: Energetically consistent model of frictional impacts in multibody systems in sticking and sliding modes. Multibody Syst. Dyn. 48, 193–209 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bahar, L.Y.: On the use of quasi-velocities in impulsive motion. Int. J. Eng. Sci. 32(11), 1669–1686 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jain, A., Rodriguez, G.: Diagonalized Lagrangian robot dynamics. IEEE Trans. Robot. Autom. 11(4), 571–584 (1995)

    Article  Google Scholar 

  22. Loduha, T.A., Ravani, B.: On first-order decoupling of equations of motion for constrained dynamical systems. J. Appl. Mech. 62, 216–222 (1995)

    Article  MATH  Google Scholar 

  23. Junkins, J.L., Schaub, H.: An instantaneous eigenstructure quasivelocity formulation for nonlinear multibody dynamics. J. Astronaut. Sci. 45(3), 279–295 (1997)

    Article  MathSciNet  Google Scholar 

  24. Kozlowski, K.: Modelling and Identification in Robotics. Springer, London (1998)

    Book  Google Scholar 

  25. Papastavridis, J.G.: A panoramic overview of the principles and equations of motion of advanced engineering dynamics. Appl. Mech. Rev. 51(4), 239–265 (1998)

    Article  Google Scholar 

  26. Gu, E.Y.L.: A configuration manifold embedding model for dynamic control of redundant robots. Int. J. Robot. Res. 19(3), 289–304 (2000)

    Article  Google Scholar 

  27. Herman, P.: PD controller for manipulator with kinetic energy term. J. Intell. Robot. Syst. 44, 101–121 (2005)

    Article  Google Scholar 

  28. Herman, P., Kozlowski, K.: A survey of equations of motion in terms of inertial quasi-velocities for serial manipulators. Arch. Appl. Mech. 76, 579–614 (2006)

    Article  MATH  Google Scholar 

  29. Aghili, F., Buehler, M., Hollerbach, J.M.: Dynamics and control of direct-drive robots with positive joint torque feedback. IEEE Int. Conf. Robot. Autom. 11, 1156–1161 (1997)

    Google Scholar 

  30. Aghili, F., Buehler, M., Hollerbach, J.M.: Motion control systems with \(H_{\infty }\) positive joint torque feedback. IEEE Trans. Control Syst. Technol. 9(5), 685–695 (2001)

    Article  Google Scholar 

  31. Sinclair, A.J., Hurtado, J.E., Junkins, J.L.: Linear feedback control using quasi velocities. J. Guid. Control Dyn. 29(6), 1309–1314 (2006)

    Article  Google Scholar 

  32. Aghili, F.: Simplified Lagrangian mechanical systems with constraints using square-root factorization. In: Multibody Dynamics 2007, ECCOMAS Thematic Conference, Milano, Italy, pp. 25–28 (2007)

    Google Scholar 

  33. Pila, A.W.: Quasi-Coordinates and Quasi-Velocities, pp. 163–245. Springer, Cham (2020)

    Google Scholar 

  34. Kozolowski, K., Herman, P.: A comparison of control algorithm for serial manipulators in terms of quasi-velocity. In: IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Takamatsu, Japan, pp. 1540–1545 (2000)

    Google Scholar 

  35. Herman, P., Kozlowski, K.: Some remarks on two quasi-velocities approaches in PD joint space control. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Maui, Hawaii, USA, pp. 1888–1893 (2001)

    Google Scholar 

  36. Chen, C.-T.: A Lagrangian formulation in terms of quasi-coordinates for the inverse dynamics of the general 6-6 Stewart platform manipulator. JSME Int. J., Ser. C, Mech. Syst. Mach. Elem. Manuf. 46(3), 1084–1090 (2003)

    Google Scholar 

  37. Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993)

    Article  Google Scholar 

  38. Featherstone, R., Fijany, A.: A technique for analyzing constrained rigid-body systems, and its application to constraint force algorithm. IEEE Trans. Robot. Autom. 15(6), 1140–1144 (1999)

    Article  Google Scholar 

  39. Featherstone, R., Thiebaut, S., Khatib, O.: A general contact model for dynamically-decoupled force-motion control. In: IEEE International Conference on Robotics & Automation, Detroit, Michigan, pp. 3281–3286 (1999)

    Google Scholar 

  40. Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993)

    Article  Google Scholar 

  41. Schutter, J.D., Bruyuinckx, H.: The Control Handbook, pp. 1351–1358. CRC, New York (1996), ch. Force Control of Robot Manipulators

    Google Scholar 

  42. Klema, V.C., Laub, A.J.: The singular value decomposition: its computation and some applications. IEEE Trans. Autom. Control 25(2), 164–176 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipies in C: The Art of Scientific Computing. Cambridge University Press, NY (1988)

    MATH  Google Scholar 

  44. Golub, G.H., Loan, C.F.V.: Matrix Computations. The Johns Hopkins University Press, Baltimore and London (1996)

    MATH  Google Scholar 

  45. Canudas de Wit, C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control Springer, London (1996)

    MATH  Google Scholar 

  46. LaSalle, J.: Some extensions of Liapunov’s second method. IRE Trans. Circuit Theory 7(4), 520–527 (1960)

    Article  MathSciNet  Google Scholar 

  47. Khalil, H.K.: Nonlinear Systems. Macmillan Publishing Company, New-York (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Aghili.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Consider the following positive–definite function:

$$ V = \frac{1}{2} \| \boldsymbol{\epsilon }_{\theta } \| ^{2}, $$
(51)

whose time-derivative along (39) gives

$$ \dot{V} = - k_{p} \| \boldsymbol{\epsilon }_{\theta } \|^{2} + \boldsymbol{\epsilon }_{ \theta }^{T} \boldsymbol{D}(\boldsymbol{\theta }) \boldsymbol{\epsilon }. $$

From (38) and (40), one can find a bound on \(\dot{V}\) as

$$ \dot{V} \leq - 2 k_{p} V + c_{d} \| \boldsymbol{\epsilon }(0) \| \| \boldsymbol{\epsilon }_{ \theta } \| e^{-k_{p} t}, $$
(52)

which has the form of a Bernoulli differential inequality. The above nonlinear inequality can be linearized by the following change of variable \(U=\sqrt{V}\), i.e.,

$$ \dot{U} \leq - k_{p} U + \frac{c_{d} \| \boldsymbol{\epsilon }(0) \|}{\sqrt{2}} e^{-k_{p} t} .$$
(53)

In view of the comparison lemma [47, p. 222] and (38), one can show that the solution of (53) must satisfy

$$ U \leq \Big( U(0) + \frac{c_{d} \| \boldsymbol{\epsilon }(0) \|}{\sqrt{2}} \Big) e^{- k_{p} t}, $$

which is equivalent to (41).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghili, F. Constrained Lagrangian dynamics based on reduced quasi-velocities and quasi-forces. Multibody Syst Dyn 53, 327–343 (2021). https://doi.org/10.1007/s11044-021-09795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-021-09795-9

Keywords

Navigation