Skip to main content
Log in

Effect of Deoxidizer on Microstructure and Mechanical Properties of Micro-Slag Gas-Shielded Flux-Cored Wire

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

With increasing requirements of continuous arc additive remanufacturing for robots in mold repair, the alloy and slag systems in the traditional flux-cored wire have to be further improved. Especially in order to realize welding automation, the content of slag must be cut down to decrease the time of removing the slag during the deposition. In this paper, Al–Mg and ferrotitanium are used as deoxidizer to make up the side effect caused by lessening the slag. Six kinds of micro-slag gas-shielded flux-cored wires with different content of deoxidizer based on the commercial cored wire RMD535 were developed. The effect of deoxidizer on microstructure and mechanical properties of micro-slag gas-shielded flux-cored wires were studied. The results demonstrated that the microstructure of deposited metal was mainly composed of acicular ferrite and proeutectoid ferrite. With the increase of deoxidizer content, the toughness increases and then decrease, reaching the maximum of 33.45 J and 35.02 J at Ag–Mg alloy and ferrotitanium content of 1.2% and 1.8%. The hardness is constantly increasing. Six kinds of welding wire had different properties, mainly because of the different characteristics of the inclusions in the deposited metal. The spherical inclusion was the result of deoxidation by Al–Mg alloy or ferrotitanium and the diameter in range of 0.4–0.8 μm were effective for acicular ferrite nucleation. However, inclusions predominantly TiOX were more effective than that of Al2O3 in the same size. The present work provided an effective way to improve the impact toughness of deposited metal by the control of deoxidizer content.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Wang, Y.W. Chung, Encyclopedia of Tribology (Springer, Bsoston, 2013), pp. 1620–1625

    Book  Google Scholar 

  2. S.S. Babu, Curr. Opin. Solid St. M. 8, 267 (2004)

    Article  CAS  Google Scholar 

  3. D.J. Abson, R.J. Pargeter, Int. Met. Rev. 31, 141 (1986)

    Article  CAS  Google Scholar 

  4. Y. Chu, W. Li, Y. Ren, L. Zhang, Metall. Mater. Trans. B 50, 2047 (2019)

    Article  CAS  Google Scholar 

  5. T. Hermenegildo, T. Santos, E. Torres, C. Afonso, A. Ramirez, Met. Mater. Int. 24, 1120 (2018)

    Article  CAS  Google Scholar 

  6. Y. Wang, W. Yang, L. Zhang, Steel Res. Int. 90, 19 (2019)

    Article  Google Scholar 

  7. L.R. Jacobo, R. García-Hernández, V.H. López-Morelos, A. Contreras, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00805-7

    Article  Google Scholar 

  8. J. Sarkar, P. Modak, S.B. Singh, D. Chakrabarti, Mater. Chem. Phys. 257, 257 (2021)

    Article  Google Scholar 

  9. K. Park, S.W. Hwang, J.H. Ji, C.H. Lee, Met. Mater. Int. 17, 349 (2011)

    Article  CAS  Google Scholar 

  10. D.S. Sarma, A.V. Karasev, P.G. Jonsson, ISIJ Int. 49, 1063 (2009)

    Article  CAS  Google Scholar 

  11. Z. Zhang, R.A. Farrar, Mater. Sci. Technol. 12, 237 (2013)

    Article  Google Scholar 

  12. H. Nako, Y. Okazaki, ISIJ Int. 55, 250 (2015)

    Article  CAS  Google Scholar 

  13. J.C. Gonzalez, C.L. Llorente, H. Biloni, Can. Metall. Quart. 25, 319 (1986)

    Article  CAS  Google Scholar 

  14. T.L. Zhang, Z.X. Li, S.D. Kou, H.Y. Jing, G.D. Li, H.J. Kin, Mater. Sci. Eng. A 628, 332 (2015)

    Article  CAS  Google Scholar 

  15. Y.C. Cai, R.P. Liu, Y.H. Wei, Z.G. Cheng, Mater. Design 62, 83 (2014)

    Article  CAS  Google Scholar 

  16. Y. Huang, G. Cheng, S. Li, W. Dai, Steel Res. Int. 89, 1800371 (2018)

    Article  Google Scholar 

  17. W. Xin, J. Zhang, G. Luo, R. Wang, Q. Meng, B. Song, Metall. Res. Technol. 115, 419 (2018)

    Article  Google Scholar 

  18. C. Yang, Y. Luan, D. Li, Y. Li, J. Mater. Sci. Technol. 35, 1298 (2019)

    Article  CAS  Google Scholar 

  19. Q. Ren, L.F. Zhang, Y.B. Liu, L.X. Cui, W. Yang, J. Mater. Res. Technol. 9, 8197 (2020)

    Article  CAS  Google Scholar 

  20. W.Y. Zhang, Welding Metallurgy (Basic Principles) (China Machine Press, Beijing, 2003)

    Google Scholar 

  21. C.B. Gui, P.A. Wu, A.L. Wang, Trans. China Weld. Inst. 26, 54 (2005)

    CAS  Google Scholar 

  22. J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, D.N. Lee, Acta Mater. 49, 2115 (2001)

    Article  CAS  Google Scholar 

  23. J.S. Byun, J.H. Shim, Y.W. Cho, D.N. Lee, Acta Mater. 51, 1593 (2003)

    Article  CAS  Google Scholar 

  24. J. Jang, J.E. Indacochea, J. Mater. Sci. 22, 689 (1987)

    Article  CAS  Google Scholar 

  25. S. Balos, L. Sidjanin, M. Dramicanin, D. Labus, B. Pilic, M. Jovicic, Met. Mater. Int. 22, 509 (2016)

    Article  CAS  Google Scholar 

  26. D. You, S.K. Michelic, P. Presoly, J. Liu, C. Bernhard, Metals 7, 460 (2017)

    Article  Google Scholar 

  27. S. Yi, C.X. Liu, Z.S. Yan, H.J. Li, J. Mater. Sci. Technol. 34, 737 (2018)

    Article  Google Scholar 

  28. A.L.V. da Costa Silva, J. Mater. Res. Technol. 8, 2408 (2019)

    Article  Google Scholar 

  29. Y. Tian, X.N. Xu, Q.B. Ye, R.D.K. Misra, Z.D. Wang, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00714-9

  30. I.S. Bott, P.R. Rios, Scripta Mater. 38, 1269 (1998)

    Article  CAS  Google Scholar 

  31. R. Kiessling, N. Lange, Non-Metallic Inclusions in Steel, Part III (The Iron and Steel Institute Publication, London, 1968)

    Google Scholar 

  32. J.M. Gregg, H.K.D.H. Bhadeshia, Acta Mater. 45, 739 (1997)

    Article  CAS  Google Scholar 

  33. K. Seo, K. Kim, H.J. Kim, H. Ryoo, G.M. Evans, C. Lee, Met. Mater. Int. 26, 1226 (2020)

    Article  CAS  Google Scholar 

  34. J. Tian, T. Qu, D. Wang, H. Wang, Z. Xu, E. Xinrui, Arch. Metall. Mater. 63, 1599 (2018)

    CAS  Google Scholar 

  35. R.A. Ricks, P.R. Howell, G.S. Barritte, J. Mater. Sci. 17, 732 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W.P., Liu, R.P., Wang, H. et al. Effect of Deoxidizer on Microstructure and Mechanical Properties of Micro-Slag Gas-Shielded Flux-Cored Wire. Met. Mater. Int. 28, 1184–1194 (2022). https://doi.org/10.1007/s12540-021-00981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00981-0

Keywords

Navigation