CC BY-NC-ND 4.0 · Synlett 2022; 33(02): 109-115
DOI: 10.1055/a-1499-8679
synpacts
EuCheMS Organic Division Young Investigator Workshop

Photoredox-Enabled Decarboxylative Synthesis of Unnatural α-Amino Acids

Andrey Shatskiy
,
Financial support from the Svenska Forskningsrådet Formas (2019-01269), the Vetenskapsrådet (Swedish Research Council, 2020-04764), the Magnus Bergvalls Stiftelse (Magnus Bergvall foundation), and the Kungliga Tekniska Högskolan (KTH Royal Institute of Technology) are gratefully acknowledged. The Olle Engkvist Foundation is kindly acknowledged for a postdoctoral fellowship to A. S.


Abstract

Recently, development of general synthetic routes to unnatural α-amino acids has gained significant momentum, driven by the high demand for such building blocks in fundamental research within molecular and structural biology, as well as for development of new pharmaceuticals. Herein, we highlight the recent progress in employing photoredox-mediated synthetic methods for accessing unnatural α-amino acids with a focus on various decarboxylative radical-based strategies.



Publication History

Received: 08 April 2021

Accepted after revision: 05 May 2021

Accepted Manuscript online:
05 May 2021

Article published online:
23 June 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Petsko GA, Ringe D. Protein Structure and Function . Primers inBiology. Oxford University Press; London: 2009
    • 2a Xue Y.-P, Cao C.-H, Zheng Y.-G. Chem. Soc. Rev. 2018; 47: 1516
    • 2b Almhjell PJ, Boville CE, Arnold FH. Chem. Soc. Rev. 2018; 47: 8980
    • 2c Hedges JB, Ryan KS. Chem. Rev. 2020; 120: 3161
    • 4a Neumann-Staubitz P, Neumann H. Curr. Opin. Struct. Biol. 2016; 38: 119
    • 4b Ravikumar Y, Nadarajan SP, Hyeon Yoo T, Lee C, Yun H. Trends Biotechnol. 2015; 33: 462
    • 4c Meister D, Taimoory SM, Trant JF. Pept. Sci. 2019; 111: e24058
    • 4d Zhang WH, Otting G, Jackson CJ. Curr. Opin. Struct. Biol. 2013; 23: 581
    • 4e Kim CH, Axup JY, Schultz PG. Curr. Opin. Chem. Biol. 2013; 17: 412
    • 4f Grauer A, König B. Eur. J. Org. Chem. 2009; 5099
    • 4g Blaskovich MA. T. J. Med. Chem. 2016; 59: 10807
    • 5a Liu J.-Q, Shatskiy A, Matsuura BS, Kärkäs MD. Synthesis 2019; 51: 2759
    • 5b Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Adv. Synth. Catal. 2019; 361: 2161
    • 5c Larionov VA, Stoletova NV, Maleev VI. Adv. Synth. Catal. 2020; 362: 4325
    • 5d Aguila Troyano FJ, Merkens K, Anwar K, Gómez-Suárez A. Angew. Chem. Int. Ed. 2021; 60: 1098
    • 5e Bottecchia C, Noël T. Chem. Eur. J. 2019; 25: 26
    • 5f Raynal L, Rose NC, Donald JR, Spicer CD. Chem. Eur. J. 2021; 27: 69
    • 5g King TA, Mandrup Kandemir J, Walsh SJ, Spring DR. Chem. Soc. Rev. 2021; 50: 39
    • 5h Bogart JW, Bowers AA. Org. Biomol. Chem. 2019; 17: 3653
    • 5i Malins LR. Pept. Sci. 2018; 110: e24049
    • 6a Kärkäs MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 6b Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
    • 6c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 7a Teegardin K, Day JI, Chan J, Weaver J. Org. Process Res. Dev. 2016; 20: 1156
    • 7b Hockin BM, Li C, Robertson N, Zysman-Colman E. Catal. Sci. Technol. 2019; 9: 889
    • 7c Glaser F, Wenger OS. Coord. Chem. Rev. 2020; 405: 213129
    • 8a Pitre SP, McTiernan CD, Scaiano JC. ACS Omega 2016; 1: 66
    • 8b Joshi-Pangu A, Lévesque F, Roth HG, Oliver SF, Campeau L.-C, Nicewicz D, DiRocco DA. J. Org. Chem. 2016; 81: 7244
    • 8c Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2021; 60: 1082
    • 8d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 8e Zilate B, Fischer C, Sparr C. Chem. Commun. 2020; 56: 1767
    • 8f Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
  • 9 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
    • 10a Shatskiy A, Liu J.-Q, Kärkäs MD. Chem 2021; 7: 283
    • 10b Kärkäs MD, Matsuura BS, Stephenson CR. J. Science 2015; 349: 1285
    • 10c Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
    • 10d Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
  • 11 Bogart JW, Bowers AA. Org. Biomol. Chem. 2019; 17: 3653
  • 12 Eftekhari-Sis B, Zirak M. Chem. Rev. 2017; 117: 8326
    • 13a Axon JR, Beckwith AL. J. J. Chem. Soc., Chem. Commun. 1995; 549
    • 13b Beckwith AL. J, Chai CL. L. J. Chem. Soc., Chem. Commun. 1990; 1087
  • 14 Yoshimi Y, Kobayashi K, Kamakura H, Nishikawa K, Haga Y, Maeda K, Morita T, Itou T, Okada Y, Hatanaka M. Tetrahedron Lett. 2010; 51: 2332
  • 15 Yoshimi Y. J. Photochem. Photobiol., A 2017; 342: 116
    • 16a Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
    • 16b Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
    • 16c Schwarz J, König B. Green Chem. 2018; 20: 323
    • 16d Murarka S. Adv. Synth. Catal. 2018; 360: 1735
    • 16e Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. ACS Catal. 2021; 11: 1640
    • 17a Wang J, Shao Z, Tan K, Tang R, Zhou Q, Xu M, Li Y.-M, Shen Y. J. Org. Chem. 2020; 85: 9944
    • 17b Ji P, Zhang Y, Wei Y, Huang H, Hu W, Mariano PA, Wang W. Org. Lett. 2019; 21: 3086
    • 17c Brandhofer T, Mancheño OG. ChemCatChem 2019; 11: 3797
  • 18 Wu G, Wang J, Liu C, Sun M, Zhang L, Ma Y, Cheng R, Ye J. Org. Chem. Front. 2019; 6: 2245
    • 19a Shah AA, Kelly MJ, Perkins JJ. Org. Lett. 2020; 22: 2196
    • 19b Merkens K, Troyano FJ. A, Djossou J, Gómez-Suárez A. Adv. Synth. Catal. 2020; 362: 2354
    • 19c Zhang O, Schubert JW. J. Org. Chem. 2020; 85: 6225
    • 19d Ji P, Zhang Y, Dong Y, Huang H, Wei Y, Wang W. Org. Lett. 2020; 22: 1557
    • 20a Aycock RA, Vogt DB, Jui NT. Chem. Sci. 2017; 8: 7998
    • 20b Patel NR, Kelly CB, Siegenfeld AP, Molander GA. ACS Catal. 2017; 7: 1766
    • 20c Rogova T, Gabriel P, Zavitsanou S, Leitch JA, Duarte F, Dixon DJ. ACS Catal. 2020; 10: 11438
    • 20d Wan Y, Zhu J, Yuan Q, Wang W, Zhang Y. Org. Lett. 2021; 23: 1406
    • 20e Sim J, Campbell MW, Molander GA. ACS Catal. 2019; 9: 1558
    • 20f Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
    • 20g Leitch JA, Rossolini T, Rogova T, Dixon DJ. ACS Catal. 2020; 10: 11430
    • 20h Rossolini T, Ferko B, Dixon DJ. Org. Lett. 2019; 21: 6668
    • 20i Reich D, Trowbridge A, Gaunt MJ. Angew. Chem. Int. Ed. 2020; 59: 2256
    • 20j Aycock RA, Pratt CJ, Jui NT. ACS Catal. 2018; 8: 9115
    • 20k Wang X, Chen Y, Song H, Liu Y, Wang Q. Org. Lett. 2021; 23: 2199
    • 20l Weigel WK, Dang HT, Yang H.-B, Martin DB. C. Chem. Commun. 2020; 56: 9699
  • 21 Shatskiy A, Axelsson A, Stepanova EV, Liu J.-Q, Temerdashev AZ, Kore BP, Blomkvist B, Gardner JM, Dinér P, Kärkäs MD. Chem. Sci. 2021; 12: 5430
  • 22 Ni S, Garrido-Castro AF, Merchant RR, de Gruyter JN, Schmitt DC, Mousseau JJ, Gallego GM, Yang S, Collins MR, Qiao JX, Yeung K.-S, Langley DR, Poss MA, Scola PM, Qin T, Baran PS. Angew. Chem. Int. Ed. 2018; 57: 14560
  • 23 Garrido-Castro AF, Choubane H, Daaou M, Maestro MC, Alemán J. Chem. Commun. 2017; 53: 7764
    • 24a Saha D. Chem. Asian J. 2020; 15: 2129
    • 24b Prentice C, Morrisson J, Smith AD, Zysman-Colman E. Beilstein J. Org. Chem. 2020; 16: 2363
    • 24c Silvi M, Melchiorre P. Nature 2018; 554: 41
    • 24d Jiang C, Chen W, Zheng W.-H, Lu H. Org. Biomol. Chem. 2019; 17: 8673