Skip to main content
Log in

Age-related post-error slowing and stimulus repetition effect in motor inhibition during a stop-signal task

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

This study aims to investigate how older adults react to a failed-inhibition error while performing a stop-signal task. That is, whether elderly people would exhibit enlarged post-error slowing and whether such slowing revealed an adaptive process, maladaptive process, or a mixture of maladaptive followed by adaptive processes. This study also addresses if the post-error process might further interact with a stimulus repetition effect based on the memory retrieval explanation. A group of 34 younger adults (age range 20–30 years) and a group of 34 older adults (age range 60–80 years) were included for the analyses. The results of the current study supported a mixture model by showing that older adults exhibited a larger post-error slowing than younger adults, and their post-error slowing was initially accompanied by deceased accuracy that then increased on the subsequent trial. Furthermore, such post-error slowing on older adults only occurred in the trial condition where the stimulus was repeated from the previous trial suggesting a memory-based process (a form of negative priming) involved in post-error processes. The implication of the current finding is that older adults might maintain the ability to detect and monitor the response error, yet their post-error adjustment might require a much longer time to start functioning well after the initial detrimental orienting response to the error and the entire process was memory-based.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available upon request if you follow ethical guidelines.

Abbreviations

SST:

Stop-signal task

SSD:

Stop-signal delay

SSRT:

Stop-signal reaction time

MoCA:

Montreal Cognitive Assessment

BDI-II:

Beck Depression Inventory-II

References

  • Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory-II. San Antonio, 78(2), 490–498.

    Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037//0033-295x.108.3.624

    Article  PubMed  Google Scholar 

  • Chern, H.-C., & Cheng, C.-M. (1999). ANOVA and trend analysis statistical program for cognitive experiments. Research in Applied Psychology, 1, 229–246.

    Google Scholar 

  • Cheyne, J. A., Carriere, J. S., Solman, G. J., & Smilek, D. (2011). Challenge and error: critical events and attention-related errors. Cognition, 121(3), 437–446.

    Article  PubMed  Google Scholar 

  • Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M., & Ullsperger, M. (2011). Posterior medial frontal cortex activity predicts post-error adaptations in task-related visual and motor areas. Journal of Neuroscience, 31(5), 1780–1789.

    Article  PubMed  Google Scholar 

  • Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., Von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25(50), 11730–11737.

    Article  PubMed  Google Scholar 

  • Eichele, H., Juvodden, H., Ullsperger, M., & Eichele, T. (2010). Mal-adaptation of event-related EEG responses preceding performance errors. Frontiers in Human Neuroscience, 4, 65.

    PubMed  PubMed Central  Google Scholar 

  • Enticott, P. G., Bradshaw, J. L., Bellgrove, M. A., Upton, D. J., & Ogloff, J. R. (2009). Stop task after-effects: the extent of slowing during the preparation and execution of movement. Experimental Psychology, 56(4), 247–251.

    Article  PubMed  Google Scholar 

  • Falkenstein, M., Hoormann, J., & Hohnsbein, J. (2001). Changes of error-related ERPs with age. Experimental Brain Research, 138(2), 258–262.

    Article  PubMed  Google Scholar 

  • Fiehler, K., Ullsperger, M., & Von Cramon, D. Y. (2005). Electrophysiological correlates of error correction. Psychophysiology, 42(1), 72–82. https://doi.org/10.1111/j.1469-8986.2005.00265.x

    Article  PubMed  Google Scholar 

  • Howell, D. C. (2012). Statistical Methods for Psychology. Cengage Learning.

  • Gehring, W. J., & Knight, R. T. (2000). Prefrontal–cingulate interactions in action monitoring. Nature Neuroscience, 3(5), 516–520.

    Article  PubMed  Google Scholar 

  • Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385–390.

    Article  Google Scholar 

  • Jentzsch, I., & Dudschig, C. (2009). Why do we slow down after an error? mechanisms underlying the effects of posterror slowing. The Quarterly Journal of Experimental Psychology, 62(2), 209–218.

    Article  PubMed  Google Scholar 

  • Laming, D. R. J. (1968). Information theory of choice-reaction times. Academic Press.

    Google Scholar 

  • Laming, D. (1979). Choice reaction performance following an error. Acta Psychologica, 43(3), 199–224.

    Article  Google Scholar 

  • Logan, G. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.

    Article  Google Scholar 

  • Marco-Pallarés, J., Camara, E., Münte, T. F., & Rodríguez-Fornells, A. (2008). Neural mechanisms underlying adaptive actions after slips. Journal of Cognitive Neuroscience, 20(9), 1595–1610.

    Article  PubMed  Google Scholar 

  • Mathalon, D. H., Bennett, A., Askari, N., Gray, E. M., Rosenbloom, M. J., & Ford, J. M. (2003). Response-monitoring dysfunction in aging and Alzheimer’s disease: an event-related potential study. Neurobiology of Aging, 24(5), 675–685.

    Article  PubMed  Google Scholar 

  • Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  • Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D., Coles, M. G., Holroyd, C. B., Kok, A., & Van der Molen, M. W. (2002). A computational account of altered error processing in older age: dopamine and the error-related negativity. Cognitive, Affective, & Behavioral Neuroscience, 2(1), 19–36.

    Article  Google Scholar 

  • Notebaert, W., Houtman, F., Van Opstal, F., Gevers, W., Fias, W., & Verguts, T. (2009). Post-error slowing: an orienting account. Cognition, 111(2), 275–279.

    Article  PubMed  Google Scholar 

  • Pesta, J., Raymond, E., & Sanders, B. (2000). Aging and negative priming: Is ignored information inhibited or remembered? Experimental Aging Research, 26(1), 37–56.

    Article  PubMed  Google Scholar 

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabbitt, P. M. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71(2), 264.

    Article  PubMed  Google Scholar 

  • Rabbitt, P., & Rodgers, B. (1977). What does a man do after he makes an error? an analysis of response programming. Quarterly Journal of Experimental Psychology, 29(4), 727–743. https://doi.org/10.1080/14640747708400645

    Article  Google Scholar 

  • Rey-Mermet, A., Gade, M., & Oberauer, K. (2018). Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(4), 501.

    PubMed  Google Scholar 

  • Ridderinkhof, K. R. (2002a). Activation and suppression in conflict tasks: empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action (pp. 494–519). Oxford: Oxford University Press.

    Google Scholar 

  • Ridderinkhof, R. K. (2002b). Micro-and macro-adjustments of task set: activation and suppression in conflict tasks. Psychological Research Psychologische Forschung, 66(4), 312–323.

    Article  PubMed  Google Scholar 

  • Ruitenberg, M. F. L., Abrahamse, E. L., De Kleine, E., & Verwey, W. B. (2014). Post-error slowing in sequential action: an aging study. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2014.00119

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, G. A., & Brewer, N. (1995). Slowness and age - speed accuracy mechanisms. Psychology and Aging, 10(2), 238–247. https://doi.org/10.1037/0882-7974.10.2.238

    Article  PubMed  Google Scholar 

  • Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed-accuracy compromise: boundary optimality in the diffusion model. Psychology and Aging, 25(2), 377–390. https://doi.org/10.1037/a0018022

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinhauser, M., Ernst, B., & Ibald, K. W. (2017). Isolating component processes of posterror slowing with the psychological refractory period paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 653–659.

    PubMed  Google Scholar 

  • Ullsperger, M., & Danielmeier, C. (2016). Reducing speed and sight: How adaptive is post-error slowing? Neuron, 89(3), 430–432. https://doi.org/10.1016/j.neuron.2016.01.035

    Article  PubMed  Google Scholar 

  • Ullsperger, M., Danielmeier, C., & Jocham, G. (2014). Neurophysiology of performance monitoring and adaptive behavior. Physiological Reviews, 94(1), 35–79. https://doi.org/10.1152/physrev.00041.2012

    Article  PubMed  Google Scholar 

  • Upton, D. J., Enticott, P. G., Croft, R. J., Cooper, N. R., & Fitzgerald, P. B. (2010). ERP correlates of response inhibition after-effects in the stop signal task. Experimental Brain Research, 206(4), 351–358.

    Article  PubMed  Google Scholar 

  • Verbruggen, F., & Logan, G. D. (2009). Models of response inhibition in the stop-signal and stop-change paradigms. Neuroscience and Biobehavioral Reviews, 33(5), 647–661. https://doi.org/10.1016/j.neubiorev.2008.08.014

    Article  PubMed  Google Scholar 

  • Verbruggen, F., Logan, G. D., & Stevens, M. A. (2008). STOP IT: windows executable software for the stop-signal paradigm. Behavior Research Methods, 40(2), 479–483. https://doi.org/10.3758/Brm.40.2.479

    Article  PubMed  Google Scholar 

  • Verbruggen, F., Chambers, C. D., & Logan, G. D. (2013). Fictitious inhibitory differences: How skewness and slowing distort the estimation of stopping latencies. Psychological Science, 24(3), 352–362. https://doi.org/10.1177/0956797612457390

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Mind Research and Imaging Center (MRIC), supported by MOST, at NCKU for consultation and instrument availability. This work was supported by the Ministry of Science and Technology (MOST), Taiwan, for financially supporting this research [Contract No. 104-2410-H-006-021-MY2, 106-2410-H-006-031-MY2, 108-2321-B-006-022-MY2, MOST 108-2410-H-006 -038-MY3, MOST 110-2321-B-006-004].

Funding

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, for financially supporting this research [Contract No. 104-2410-H-006-021-MY2, 106-2410-H-006-031-MY2, 108-2321-B-006-022-MY2, MOST 108-2410-H-006-038-MY3, MOST 110-2321-B-006-004].

Author information

Authors and Affiliations

Authors

Contributions

HH designed the analysis protocol, analyzed the data, and drafted and revised the manuscript. SH applied for the research funding, designed the research protocol, supervised data analyses, and rewrote and revised the manuscript.

Corresponding author

Correspondence to Shulan Hsieh.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

Procedures were carried out under ethical approval obtained from the National Cheng Kung University Research Ethics Committee (NO. 104-004).

Consent to participate

Participants provided written informed consent before beginning the experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, H.M., Hsieh, S. Age-related post-error slowing and stimulus repetition effect in motor inhibition during a stop-signal task. Psychological Research 86, 1108–1121 (2022). https://doi.org/10.1007/s00426-021-01551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-021-01551-0

Navigation