Skip to main content
Log in

Glyphosate concentrations in global freshwaters: are aquatic organisms at risk?

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Glyphosate is the most used herbicide worldwide. Many studies have reported glyphosate risks to aquatic organisms of different trophic levels. Moreover, evidence suggests flaws in countries’ legislation that may imply the non-protection of aquatic species exposed to glyphosate. Therefore, we aimed to investigate glyphosate concentrations in freshwater ecosystems worldwide based on a systematic literature review, to discuss the results considering each country’s legislation, and to assess the relative tolerance and risk for aquatic species. Only articles providing in situ concentrations of glyphosate in freshwater systems were included in our study. In total, 73 articles met the inclusion criteria and were used in our analysis. The studies comprised freshwater ecosystems from 21 countries. Most countries evaluated (90%) did not have restrictive legislation for aquatic glyphosate concentrations, resulting in a potential non-protection of aquatic organisms. Glyphosate may pose a moderate to high risk in 95% of the countries investigated, reaching a maximum concentration of 105 mg L-1. Additionally, the risk analysis showed that glyphosate concentrations below 0.1 μg L-1 represent a low risk, whereas glyphosate concentrations above 1 μg L-1, which is below the limit established by some countries’ legislation, represent a high risk to aquatic organisms. Therefore, we strongly recommend a revision of the countries’ legislation for glyphosate concentration in freshwater systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Alza-Camacho WR, García-Colmenares JM, Chaparro-Acuña SP (2016) Voltammetric quantification of paraquat and glyphosate in surface waters. Corpoica Ciencia y Tecnologia Agropecuaria 17(3):331–345

    Google Scholar 

  • Avigliano E, Schenone NF (2015) Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest mountain rivers (South America). Microchem J 122:149–158

    CAS  Google Scholar 

  • Babić S, Zelenika A, Macan J, Kaštelan-Macan M (2005) Ultrasonic extraction and TLC determination of glyphosate in the spiked red soils. Agric Conspec Sci 70:99–103

    Google Scholar 

  • Battaglin WA, Kolpin DW, Scribner EA, Kuivila KM, Sandstrom MW (2005) Glyphosate, other herbicides, and transformation products in midwestern streams, 2002. J Am Water Resour Assoc 41(2):323–332

    CAS  Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:3

    Google Scholar 

  • BHAG - Baum Hedlund Aristei Goldman (2019) Where is Glyphosate Banned? https://www.bluehillhealthyecosystem.com/wp-content/uploads/2019/11/Where-is-Glyphosate-Banned-Baum-Hedlund-Aristei-Goldman.pdf. Accessed 29 March 2021

  • Bonansea RI, Filippi I, Wunderlin DA, Marino DJG, Amé MV (2018) The fate of glyphosate and AMPA in a freshwater endorheic basin: an ecotoxicological risk assessment. Toxics 6(1):3

    Google Scholar 

  • BRASIL (2005). CONAMA Resolution No. 357 of March 17. Provides for the classification of water bodies and environmental guidelines for their classification, as well as establishing the conditions and standards for effluent discharge, and other measures. 23. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Accessed 02 April 2020

  • Byer JD, Struger J, Klawunn P, Todd A, Sverko E (2008) Low cost monitoring of glyphosate in surface waters using the ELISA method: an evaluation. Environ Sci Technol 42(16):6052–6057

    CAS  Google Scholar 

  • Carazo-Rojas E, Pérez-Rojas G, Pérez-Villanueva M, Chinchilla-Soto C, Chin-Pampillo JS, Aguilar-Mora P, Alpízar-Marín M, Masís-Mora M, Rodríguez-Rodríguez C, Vryzas Z (2018) Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environ Pollut 241:800–809

    CAS  Google Scholar 

  • Carretta L, Cardinali A, Marotta E, Zanin G, Masin R (2019) A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub μg/L level. J Chromatogr A 1600:65–72

    CAS  Google Scholar 

  • Castro Berman M, Marino DJG, Quiroga MV, Zagarese H (2018) Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina. Chemosphere. 200:513–522

    CAS  Google Scholar 

  • CCME (2012) Canadian Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life: Glyphosate. In: Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment (Winnipeg). http://ceqg-rcqe.ccme.ca/download/en/182. Accessed 02 April 2020

  • Daam MA, Rico A (2018) Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics. Environ Sci Pollut Res 25(14):13235–13243

  • Daouk S, Copin PJ, Rossi L, Chevre N, Pfeifer HR (2013) Dynamics and environmental risk assessment of the herbicide glyphosate and its metabolite AMPA in a small vineyard river of the Lake Geneva catchment. Environ Toxicol Chem 32(9):2035–2044

    CAS  Google Scholar 

  • Di Guardo A, Finizio A (2018) A new methodology to identify surface water bodies at risk by using pesticide monitoring data: The glyphosate case study in Lombardy Region (Italy). Sci Total Environ 611:421–429

    Google Scholar 

  • European Commission (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. OJ L 330/32, 5.12.98, p. 1e23. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083. Accessed 02 April 2020

  • European Commission (2003) Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Ispra (IT): European Commission Joint Research Centre. EUR, 20418. https://op.europa.eu/en/publication-detail/-/publication/31268bfb-3534-4b9f-90aa-3506f6ba8231. Accessed 02 April 2020

  • Felline S, Del Coco L, Kaleb S, Guarnieri G, Fraschetti S, Terlizzi A, Fanizzi EP, Falace A (2019) The response of the algae Fucus virsoides (Fucales, Ochrophyta) to Roundup® solution exposure: a metabolomics approach. Environ Pollut 254:112977

    CAS  Google Scholar 

  • Fernandes G, Aparicio VC, Bastos MC, De Geronimo E, Labanowski J, Prestes OD, Zanella R, dos Santos DR (2019) Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Sci Total Environ 651:1377–1387

    CAS  Google Scholar 

  • Ferreira DF, Sarmento RA, Saraiva AD, Pereira RR, Picanco MC, Pestana JLT, Soares A (2017) Low Concentrations of Glyphosate-Based Herbicide Affects the Development of Chironomus xanthus. Water Air Soil Pollut 228:8

    Google Scholar 

  • Garza-León CV, Arzate-Cárdenas MA, Rico-Martínez R (2017) Toxicity evaluation of cypermethrin, glyphosate, and malathion, on two indigenous zooplanktonic species. Environ Sci Pollut Res 24:22

    Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup® herbicide. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 35–120

    Google Scholar 

  • Gonzalez D, Juarez AB, Krug CP, Santos M, Vera MS (2019) Freshwater periphyton response to technical-grade and two commercial formulations of glyphosate. Ecologia Austral 29:20–27

    Google Scholar 

  • Gunarathna S, Gunawardana B, Jayaweera M, Manatunge J, Zoysa K (2018) Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. J Environ Sci Health B 53(11):729–737

  • Hanke I, Singer H, Hollender J (2008) Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Anal Bioanal Chem 391(6):2265–2276

    CAS  Google Scholar 

  • Henderson AM, Gervais JA, Luukinen B, Buhl K, Stone D, Strid A, Cross A, Jenkins J (2010) Glyphosate Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services. http://npic.orst.edu/factsheets/archive/glyphotech.html. Accessed 02 September 2020

  • Hébert M-P, Fugère V, Gonzalez A (2019) The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Front Ecol Environ 17(1):48–56

  • IBGE (2017) Instituto Brazilero de Geografia e Estatística (IBGE). Senso Agropecuário. 2017. https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017#agroindustria-rural. Accessed 09 July 2020

  • International Agency for Research on Cancer (IARC) (2017) Some organophosphate insecticides and herbicides - glyphosate. IARC monographs on the evaluation of carcinogenic risks to humans, 112. Available at: Some Organophosphate Insecticides and Herbicides - PubMed (nih.gov). Accessed 09 July 2020

  • Iturburu FG, Calderon G, Amé MV, Menone ML (2019) Ecological risk assessment (ERA) of pesticides from freshwater ecosystems in the Pampas region of Argentina: legacy and current use chemicals contribution. Sci Total Environ 691:476–482

    CAS  Google Scholar 

  • Klingelhöfer D, Braun M, Brüggmann D, Groneberg DA (2021) Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape? Sci Total Environ 765:144271

    Google Scholar 

  • Kudsk P, Mathiassen SK (2020) Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci 68(3):214–222. https://doi.org/10.1017/wsc.2019.59

    Article  Google Scholar 

  • Liu T, Xu S, Lu S, Qin P, Bi B, Ding H, Liu Y, Guo X, Liu X (2018) A review on removal of organophosphorus pesticides in constructed wetland: performance, mechanism and influencing factors. Sci Total Environ 651:2247–2268

    Google Scholar 

  • Lupi L, Bedmar F, Puricelli M, Marino D, Aparicio VC, Wunderlin D, Miglioranza KSB (2019) Glyphosate runoff and its occurrence in rainwater and subsurface soil in the nearby area of agricultural fields in Argentina. Chemosphere 225:906–914

    CAS  Google Scholar 

  • MA (1998) Decreto Lei no. 236/98 de 1 de Agosto. Ministério do Ambiente. Diário da República I Série A, 176, 3676– 3722. https://dre.pt/pesquisa/-/search/430457/details/maximized. Accessed 02 April 2020

  • Maggi F, la Cecilia D, Tang FHM, McBratney A (2020) The global environmental hazard of glyphosate use. Sci Total Environ 717:137167

  • MaHamilton DJ, Ambrus A, Dieterle RM, Felsot SA, Harris CA, Holland PT, Katayama A, Kurihara N, Linders J, Unsworth J, Wong SS (2003) Regulatory limits for pesticide residues in water. IUPAC Technical Report. Pure Appl Chem 75:1123–1155

    Google Scholar 

  • Melo KG, De Nucci G, Trape AZ, Jacobucci SRF, Garlipp CR, Rosa PCP (2018) Brief review analytical methods for the determination of glyphosate. MOJ Toxicology 4(1):39–42

    Google Scholar 

  • Meshkini S, Rahimi-Arnaei M, Tafi AA (2019) The acute and chronic effect of roundup herbicide on histopathology and enzymatic antioxidant system of Oncorhynchus mykiss. Int J Environ Sci Technol 16(11):6847–6856

  • Ministerio de la Protección Social, Ministerio de Ambiente, Vivienda y Desarrollo Territorial (2007) Resolución 2115 de 2007, Por medio de la cual se señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislaci%C3%B3n_del_agua/Resoluci%C3%B3n_2115.pdf. Accessed 02 April 2020

  • Moher D, Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta–analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012

    Google Scholar 

  • Montiel-Leon JM, Munoz G, Duy SV, Do DT, Vaudreuil MA, Goeury K, Guillemette F, Amyot M, Sauve S (2019) Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Environ Pollut 250:29–39

    CAS  Google Scholar 

  • Muskus MA, Krauss M, Miltner A, Hamer U, Nowak KM (2019) Effect of temperature, pH and total organic carbon variations on microbial turnover of 13C315N-glyphosate in agricultural soil. Sci Total Environ 658:697–707

    CAS  Google Scholar 

  • Okada E, Costa JL, Bedmar F (2016) Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 263:78–85

    CAS  Google Scholar 

  • Okada E, Pérez D, De Gerónimo E, Aparicio V, Massone H, Costa JL (2018) Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Environ Sci Pollut Res 25:15120–15132

    CAS  Google Scholar 

  • Papadakis EN, Vryzas Z, Kotopoulou A, Kintzikoglou K, Makris KC, Papadopoulou-Mourkidou E (2015) A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicol Environ Saf 116:1–9

    CAS  Google Scholar 

  • Perez GL, Torremorell A, Mugni H, Rodríguez P, Vera MS, Nascimento M, Zagarese H (2007) Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecol Appl 17(8):2310–2322

    CAS  Google Scholar 

  • Pizarro H, Vera MS, Vinocur A, Pérez G, Ferraro M, Menéndez Helman RJ, Santos Afonso M (2016) Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environ Sci Pollut Res 23:5143–5153

    CAS  Google Scholar 

  • Pozzetti VC, Gomes WRB (2018) O princípio da precaução e o pacote do veneno: o projeto de lei n° 6.299/2002 e as estratégias para enfraquecer a fiscalização dos agrotóxicos no Brasil. Revista de Direito Agrário e Agroambiental 4:71–90

    Google Scholar 

  • Primost JE, Marino DJG, Aparicio VC, Costa JL, Carriquiriborde P (2017) Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina. Environ Pollut 229:771–779

    CAS  Google Scholar 

  • Rendon-von Osten J, Dzul-Caamal R (2017) Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. Int J Environ Res Public Health 14(6):595

    Google Scholar 

  • Reno U, Doyle SR, Momo FR, Regaldo L, Gagneten AM (2018) Effects of glyphosate formulations on the population dynamics of two freshwater cladoceran species. Ecotoxicology. 27:784–793

    CAS  Google Scholar 

  • Richmond ME (2018) Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J Environ Stud Sci 8:416–434

    Google Scholar 

  • Ronco AE, Marino DJG, Abelando M, Almada P, Apartin CD (2016) Water quality of the main tributaries of the Paraná Basin: glyphosate and AMPA in surface water and bottom sediments. Environ Monit Assess 188(8):1–13

    CAS  Google Scholar 

  • Rubio F, Veldhuis LJ, Clegg BS, Fleeker JR, Hall JC (2003) Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. J Agric Food Chem 51(3):691–696

    CAS  Google Scholar 

  • Ruuskanen S, Rainio MJ, Kuosmanen V, Laihonen M, Saikkonen K, Saloniemi I, Helander M (2019) Female preference and adverse developmental effects of glyphosate-based herbicides on ecologically relevant traits in japanese quails. Environ Sci Technol 54(2):1128–1135

  • Sabio y García CA, Schiaffino MR, Lozano VL, Vera MS, Ferraro M, Izaguirre I, Pizarro H (2020) New findings on the effect of glyphosate on autotrophic and heterotrophic picoplankton structure: a microcosm approach. Aquat Toxicol 222:105463

  • Sasal MC, Wilson MG, Sione SM, Beghetto SM, Gabioud EA, Oszust JD, Paravani EV, Demonte L, Repetti MR, Bedendo DJ, Medero SL, Goette JJ, Pautasso N, Schulz GA (2017) Monitoring of glyphosate in surface water in the province of Entre Ríos. Participatory action research as a collaborative methodology. Revista de Investigaciones Agropecuarias 43(2):195–205

    Google Scholar 

  • Saxton MA, Morrow EA, Bourbonniere RA, Wilhelm SW (2011) Glyphosate influence on phytoplankton community structure in Lake Erie. J Great Lakes Res 37(4):683–690

    CAS  Google Scholar 

  • Silva AS, Toth IV, Pezza L, Pezza HR, Lima JL (2011) Determination of glyphosate in water samples by multi-pumping flow system coupled to a liquid waveguide capillary cell. Anal Sci 27(10):1031–1036

    CAS  Google Scholar 

  • Smedbol É, Lucotte M, Labrecque M, Lepage L, Juneau P (2017) Phytoplankton growth and PSII efficiency sensitivity to a glyphosatebased herbicide (factor 540®). Aquat Toxicol 192:265–273

  • Smit CE, Kalf D (2014) RIVM Letter report 601714026. Pesticides in surface water comparison between the Netherlands and other European countries. Accessed April 02

  • Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leontievsky AA (2015) Microbial degradation of glyphosate herbicides (Review). Appl Biochem Microbiol 51(2):188–195

    CAS  Google Scholar 

  • Székács A, Darvas B (2018) Re-registration challenges of glyphosate in the European Union. Front Environ Sci 6

  • Umbuzeiro GA, Kmmrow F, Rei FFC (2010) Toxicology, water quality standards and legislation. Revista de Gestão Integrada em Saúde do Trabalho e Meio Ambiente. 5, 1

  • USEPA (2006) United States Environmental Protection Agency. National recommended water quality criteria. Washington, DC: U.S. Environmental Protection Agency, Office of Water. https://www.epa.gov/standards-water-body-health. Accessed 02 April 2020

  • USEPA (2015) United States Environmental Protection Agency. Preliminary ecological risk assessment in support of the registration review of glyphosate and its salts. https://beta.regulations.gov/document/EPA-HQ-OPP-2009-0361-0077. Access 03 December 2020

  • USEPA (2016) United States Environmental Protection Agency. Contaminant Information Sheets (CISs) for the Final Fourth Contaminant Candidate List (CCL 4). https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0. Accessed 08 December 2020

  • Valle AL, Mello FCC, Alves-Balvedi RP, Rodrigues LP, Goulart LR (2019) Glyphosate detection: methods, needs and challenges. Environ Chem Lett 17:291–317

    CAS  Google Scholar 

  • Vera MS, Lagomarsino L, Sylvester Gonzalo M, Pérez L, Rodríguez P, Mugni H, Sinistro R, Ferraro M, Bonetto C, Zagarese H, Pizarro H (2010) New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19:710–721

    CAS  Google Scholar 

  • Vilas-Boas JA, Cardoso SJ, Senra MVX, Rico A, Dias RJP (2020) Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: a meta–analysis. Ecotoxicol Environ Saf 199:110669

  • Villamar-Ayala CA, Carrera-Cevallos JV, Vasquez-Medrano R, Espinoza-Montero PJ (2019) Fate, eco-toxicological characteristics, and treatment processes applied to water polluted with glyphosate: a critical review. Crit Rev Environ Sci Technol 49(16):1476–1514

  • Wang C, Lin X, Li L, Lin S (2016) Differential growth responses of marine phytoplankton to herbicide glyphosate. PLoS One 11:e0151633

    Google Scholar 

  • Water Framework Directive (2010) Proposed EQS for Water Framework Directive Annex VIII substances: glyphosate. https://www.wfduk.org/sites/default/files/Media/Glyphosate - UKTAG.pdf. Accessed 19 July 2020

  • Zhang Z, Troldborg M, Yates K, Osprey M, Kerr C, Hallett PD, Baggaley N, Rhind SM, Dawson JJC, Hough RL (2016) Evaluation of spot and passive sampling for monitoring, flux estimation and risk assessment of pesticides within the constraints of a typical regulatory monitoring scheme. Sci Total Environ 569:1369–1379

    Google Scholar 

  • Zhu Y, Zhang F, Tong C, Liu W (1999) Determination of glyphosate by ion chromatography. J Chromatogr A 850(1-2):297–301

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Andreu Rico for his comments on the text.

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001 (fellowship to GQ, JRP, and JAVB)—and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (fellowship to GQ and EMB).

Author information

Authors and Affiliations

Authors

Contributions

EMB, RFM, SJC, GQ, JAVB, and ROP conceptualized the article, analyzed, and interpreted the data. EMB, GQ, and JAVB were responsible for writing the original draft. EMB, GQ, JAVB, RFM, SJC, JRP, and ROP reviewed and edited the article. EMB, RFM, GB, JAVB, and JRP made the figures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Emília Marques Brovini.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ester Heath

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

ESM 1

(XLSX 114 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brovini, E.M., Cardoso, S.J., Quadra, G.R. et al. Glyphosate concentrations in global freshwaters: are aquatic organisms at risk?. Environ Sci Pollut Res 28, 60635–60648 (2021). https://doi.org/10.1007/s11356-021-14609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14609-8

Keywords

Navigation