Skip to main content
Log in

Magnetically tuning microwave propagation parameters in ferrofluids

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The paper reports on the frequency (f) and static magnetic field (H) dependencies of the microwave propagation parameters, in the ranges 0.1–6 GHz and 0–90.7 kA/m, of a kerosene-based ferrofluid with magnetite particles, filtered in magnetic field gradient. In the investigated range, the sample exhibits ferromagnetic resonance phenomenon and Maxwell–Wagner dielectric relaxation. Unlike the usual way of studying the propagation of microwaves through different media, in this paper we have defined an overall reflection coefficient, Rw(f, H), of a material with thickness, w, deposited on a total reflective support, which takes into account both the attenuation of wave within the material and the reflection at the air–material interface. Based on the measured relative magnetic permeability, \(\mu _{r}\), and relative dielectric permittivity, \(\varepsilon _{r}\), a comprehensive and meaningful set of microwave propagation parameters are determined. Apart from Rw(f, H), this set of parameters of ferrofluid includes the attenuation constant of the electromagnetic wave, \(\alpha \)(f, H), the phase constant \(\beta \)(f, H), the real, n’(f, H), and imaginary, n”(f, H), components of the refractive index, the reflection coefficient at the interface air–material, R(f, H), and the quarter wavelength in material, \(\lambda _{\textit{1/4}}\)(f, H). Based on the theoretical considerations and characteristics of ferrofluid, simplified and practical formulas of the propagation parameters are given and also possible applications of the results are suggested (such as electromagnetic absorber, phase shifter, microwave lenses and vibration sensor). This connection between theory and experimental results offers an example for the preliminary design of microwave applications of ferrofluids and, by extension, for any material consisting of magnetic nanoparticles dispersed in a dielectric matrix.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Damez, P. Artillan, A. Hellouin de Menibus, C. Bermond, P. Xavier, Effect of water content on microwave dielectric properties of building materials. Constr. Build. Mater. 263, 120107 (2020)

    Article  Google Scholar 

  2. J.G.D. Oliveira, J.G. Junior, E.N.M. Pinto, V.P. Neto, A.G. D’Assunção, A new planar microwave sensor for building materials complex permittivity characterization. Sensors 20(6328), 1–15 (2020). https://doi.org/10.3390/s20216328

    Article  Google Scholar 

  3. G.R. Mishra, G. Nath, R. Paikaray, Synthesis and characterization of microwave absorbing material. Indian J. Phys. 94, 1749–1757 (2020). https://doi.org/10.1007/s12648-019-01633-1

    Article  ADS  Google Scholar 

  4. I. Shayea, L.A. Nissirat, M.A. Nisirat, A. Alsamawi, T.A. Rahman, M.H. Azmi, M. Abo-Zeed, I. Trrad, Rain attenuation and worst month statistics verification and modeling for 5G radio link system at 26 GHz in Malaysia. Trans. Emergi. Tel Tech. 30(12), 1–19 (2019). https://doi.org/10.1002/ett.3697

    Article  Google Scholar 

  5. P. Mathur, A. Thakur, R. Augustine, D.G. Kurup, A novel Non-Invasive Microwave Technique for monitoring Salinity in Water, TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), Kochi, India, 2019, pp. 226–229, https://doi.org/10.1109/TENCON.2019.8929588

  6. I. Gaponenkov, O. Fedorova, Zh Vasilyeva, T. Krepkaia, Microwave heating in industry. IOP Conf. Ser. Earth Environ. Sci. 302, 012106 (2019). https://doi.org/10.1088/1755-1315/302/1/012106

    Article  Google Scholar 

  7. Y.-J. Gao, J.-X. Liu, Q.-Y. Ye, Research on the detection of the brain tumor with the ultrawide-band microwave signal based on the high-precision symplectic finite-difference time-domain electromagnetic algorithm and beam forming imaging algorithm. Int. J. RF Microwave Computer-Aided Eng. 30(12), 1–11 (2020)

    Article  Google Scholar 

  8. J. Wang, X. Jiang, L. Peng, X. Li, H. An, B. Wen, Detection of neural activity of brain functional site based on microwave scattering principle. IEEE Access 7, 13468–13475 (2019). https://doi.org/10.1109/ACCESS.2019.2894128

    Article  Google Scholar 

  9. S. Yang, P. Liu, M. Yang, Q. Wang, J. Song, L. Dong, From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects. Sci. Rep. (2016). https://doi.org/10.1038/srep21921

    Article  Google Scholar 

  10. S.B. Paiva, V.P. Neto, A.G. D’Assunção, A new compact, stable and dual-band active frequency selective surface with closely spaced resonances for wireless applications at 2.4 and 2.9 GHz. IEEE Trans. Electromagn. Compatib. 62, 691–697 (2020)

    Article  Google Scholar 

  11. Gregory H. Huff, David L. Rolando, Phillip Walters, Jacob McDonald, A frequency reconfigurable dielectric resonator antenna using colloidal dispersions. IEEE Antennas Wirel. Propag. Lett. 9, 288–290 (2010)

    Article  ADS  Google Scholar 

  12. A.S. Horton, S.L. Chilton, H.H. Sigmarsson, J.E. Ruyle, Tunable microstrip filter element using magnetically-repositioned ferrofluid load. Electron. Lett. 53, 256–258 (2017)

    Article  ADS  Google Scholar 

  13. R. Baruah, N.S. Bhattacharyya, Ferrofluid actuation based frequency reconfigurable patch antenna. Progress Electromagn. Res. Lett. 79, 71–77 (2018)

    Article  Google Scholar 

  14. P.C. Fannin, N. Stefu, C.N. Marin, I. Malaescu, R. Totoreanu, Ferrofluid microwave devices with magnetically controlled impedances. AIP Conf. Proc. 1262, 92–97 (2010)

    Article  ADS  Google Scholar 

  15. M. Mishra, A.P. Singh, B.P. Singh, V.N. Singh, S.K. Dhawan, Conducting ferrofluid: a high-performance microwave shielding material. J. Mater. Chem. A 2, 13159–13168 (2014)

    Article  Google Scholar 

  16. Tetsuji Inui, Kouichi Konishi, Kiichi Oda, Fabrications of broad-band rf-absorber composed of planar hexagonal ferrites. IEEE Trans. Magn. 35, 3148–3150 (1999)

    Article  ADS  Google Scholar 

  17. Y.L. Raikher, M.I. Shliomis, Relaxation Phenomena in Condensed Matter. Adv. Chem. Phys. 87(8), 595 (1994)

    Google Scholar 

  18. P.C. Fannin, YuP Kalmykov, S.W. Charles, Investigation of subsidiary loss-peaks in the frequency dependent susceptibility profiles of magnetic fluids. J. Magn. Magn. Mater. 289, 133–135 (2005)

    Article  ADS  Google Scholar 

  19. C.N. Marin, The particle concentration effect on magnetic resonance linewidth for magnetic liquids with chain aggregates. J. Magn. Magn. Mater. 250, 197–202 (2002)

    Article  ADS  Google Scholar 

  20. C.N. Marin, Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids. J. Magn. Magn. Mater. 300, 397–406 (2006)

    Article  ADS  Google Scholar 

  21. P.C. Fannin, C. MacOireachtaigh, C. Couper, An improved technique for the measurement of the complex susceptibility of magnetic colloids in the microwave region. J. Magn. Magn. Mater. 322, 2428–2833 (2010)

    Article  ADS  Google Scholar 

  22. P.C. Fannin, B.K.P. Scaife, A.T. Giannitsis, S.W. Charles, Determination of the radius of nano-particles in a magnetic fluid by means of a constant frequency measurement technique. J. Phys. D Appl. Phys. 35, 1305–1310 (2002)

    Article  ADS  Google Scholar 

  23. P.C. Fannin, C.N. Marin, C. Couper, Precessional decay time of nanoparticles in magnetic fluids. J. Magn. Magn. Mater. 322, 1682–1685 (2010)

    Article  ADS  Google Scholar 

  24. P.C. Fannin, C.N. Marin, Determination of the Landau-Lifshitz damping parameter by means of complex susceptibility measurements. J. Magn. Magn. Mater. 299, 425–429 (2006)

    Article  ADS  Google Scholar 

  25. R.S. de Biasi, T.C. Devezas, Anisotropy field of small magnetic particles as measured by resonance. J. Appl. Phys. 49, 2466 (1978)

    Article  ADS  Google Scholar 

  26. C. Couper, C.N. Marin, P.C. Fannin, Biasing field effect on the microwave dielectric properties of magnetic fluids. Phys. Proc. 9, 58–62 (2010)

    Article  ADS  Google Scholar 

  27. P. Pelster, U. Simon, Nanodispersion of conducting particles: preparation, microstructure and dielectric properties. Colloid Polym. Sci. 277, 2–14 (1999)

    Article  Google Scholar 

  28. R.E. Collin, Foundation for Microwave Engineering (McGraw-Hill Inc, New York, 1966)

    Google Scholar 

  29. C.N. Marin, P.C. Fannin, K. Raj, V. Socoliuc, Magneto-dielectric spectroscopy of magnetic fluids. Magnetohydrodynamics 49(3–4), 270–276 (2013)

    Article  Google Scholar 

  30. J. Zhang, D. Yuping, L. Shuqing, L. Xiaogang, L. Shunhua, The effects of high magnetic field on the morphology and microwave electromagnetic properties of MnO2 powder. J. Solid State Chem. 183, 1490–1495 (2010)

  31. P.C. Fannin, C.N. Marin, I. Malaescu, N. Stefu, P. Vlazan, S. Novaconi, S. Popescu, Effect of the concentration of precursors on the microwave absorbent properties of Zn/Fe oxide nanopowders. J. Nanopart. Res. 13, 311–319 (2011)

    Article  ADS  Google Scholar 

  32. L. Gabor, R. Minea, D. Gabor, RO Patent 108851(1994)

  33. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (John Wiley and Sons, New Jersey, 1974)

    Google Scholar 

  34. M. Jadav, S.P. Bhatnagar, Particle size controlled magnetic loss in magnetite nanoparticles in RF-microwave region. IEEE Trans. Magn. (2020). https://doi.org/10.1109/TMAG.2020.2990769

    Article  Google Scholar 

Download references

Acknowledgements

C. N. Marin acknowledges the partial support from the research contract 02-1-1107-2011/2021 ANCSI-JINR Dubna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Marin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fannin, P.C., Bunoiu, O.M., Malaescu, I. et al. Magnetically tuning microwave propagation parameters in ferrofluids. Eur. Phys. J. E 44, 83 (2021). https://doi.org/10.1140/epje/s10189-021-00087-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00087-w

Navigation