Skip to main content
Log in

A Variational Model for Deformable Registration of Uni-modal Medical Images with Intensity Biases

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Deformable image registration aims at estimating a proper displacement field from a fixed image and a moving one. Variational deformable registration models often consist of a data term of the images and a regularization term of the estimated displacement field. In this paper, we propose a variational model for registering uni-modal medical images with intensity biases. Precisely, the proposed model employs local correlation coefficients (LCC) as the data term and regularizes all possible displacement fields as functions of bounded deformation (BD functions), which is thus termed as BDLCC model. A primal-dual algorithm is derived for solving the model. Two conclusions can be drawn from two-dimensional and three-dimensional numerical experiments: (1) the proposed primal-dual algorithm is effective and stable, (2) the BDLCC model is effective for deformable registration of uni-modal images with intensity biases, and competitive with other state-of-the-art deformable registration models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://www.dir-lab.com/ReferenceData.html

  2. https://www.dir-lab.com/Results.html

References

  1. Viergever, A., Maintz, A., Klein, S., Murphy, K., Staring, M., Pluim, J.: A survey of medical image registration-under review. Comput. Digit. Eng. 33(1), 140–144 (2016)

    Google Scholar 

  2. Alam, F., Rahman, S., Ullah, S., Gulati, K.: Medical image registration in image guided surgery: issues, challenges and research opportunities. Biocybern. Biomed. Eng. 38(1), 71–89 (2018)

    Article  Google Scholar 

  3. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  4. Maintz, A., Viergever, A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Article  Google Scholar 

  5. Josien, P., Maintz, A., Viergever, A.: Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 22(8), 986–1004 (2003)

    Article  Google Scholar 

  6. Cachier, P., Pennec, X.: 3D non-rigid registration by gradient descent on a Gaussian-windowed similarity measure using convolutions. In Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No. PR00737), 182–189, (2000)

  7. Hermosillo, G.V., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. Int. J. Comput. Vision 50(3), 329–343 (2002)

    Article  Google Scholar 

  8. Suetens, P.: Fundamentals of Medical Imaging, 2nd edn., pp. 33–156. Cambridge University Press, New York (2009)

  9. Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X.: LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage 81(6), 470–483 (2013)

    Article  Google Scholar 

  10. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration, pp. 117–135. SIAM (2009)

  11. Vishnevskiy, V., Gass, T., Szekely, G., Tanner, C., Goksel, O.: Isotropic total variation regularization of displacements in parametric image registration. IEEE Trans. Med. Imaging 36(2), 385–395 (2017)

    Article  Google Scholar 

  12. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Chapman and Hall/CRC, Boca Raton (2015)

    Book  Google Scholar 

  13. Nie, Z.W., Yang, X.P.: Deformable image registration using functions of bounded deformation. IEEE Trans. Med. Imaging 38(6), 1488–1500 (2019)

    Article  Google Scholar 

  14. Jud, C., Sandkuhler, R., Cattin, P.C.: An inhomogeneous multi-resolution regularization concept for discontinuity preserving image registration. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds.) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science, vol. 10883. Springer, Cham (2018)

    Google Scholar 

  15. Sandkuhler, R., Jud, C., Pezold, S., Cattin, P.C.: Adaptive graph diffusion regularization for discontinuity preserving image registration. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds.) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science, vol. 10883. Springer, Cham (2018)

    Google Scholar 

  16. Thirion, J.-P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  17. Ng, E., Ebrahimi, M.: An unsupervised learning approach to discontinuity-preserving image registration. In: Spiclin, Z., McClelland, J., Kybic, J., Goksel, O. (eds.) Biomedical Image Registration. WBIR 2020. Lecture Notes in Computer Science, vol. 12120. Springer, Cham (2020)

    Google Scholar 

  18. Aggrawal, H.O., Andersen, M.S., Modersitzki, J.: An image registration framework for discontinuous mappings along cracks. In: Spiclin, Z., McClelland, J., Kybic, J., Goksel, O. (eds.) Biomedical Image Registration. WBIR 2020. Lecture Notes in Computer Science, vol. 12120. Springer, Cham (2020)

    Google Scholar 

  19. Washizu, K.: Variational Methods in Elasticity and Plasticity, 2nd edn. Pergamon Press, New York (1975)

    MATH  Google Scholar 

  20. Ambrosio, L., Coscia, A., Dal, M.G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139(3), 201–238 (1997)

    Article  MathSciNet  Google Scholar 

  21. Barroso, A., Fonseca, I., Toader, R.: A relaxation theorem in the space of functions of bounded deformation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 29(1), 19–49 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Lin, F.H., Yang, X.P.: Geometric Measure Theory-An Introduction. International Press, Boston (2002)

    MATH  Google Scholar 

  23. Lax, P.D.: Functional Analysis. John Wiley and Sons Inc, Canada (2002)

    MATH  Google Scholar 

  24. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point, Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, pp. 113–123. Eurographics Association, Genova (2013)

  25. Yao, Y.X., Deng, B.L., Xu, W.W., Zhang, J.Y.: Quasi-Newton solver for robust non-rigid registration, arXiv:2004.04322 (2020)

  26. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  27. Hajinezhad, D., Hong, M.Y., Zhao, T., Wang, Z.R.: NESTT: A nonconvex primal-dual splitting method for distributed and stochastic optimization, Advances in neural information processing systems, pp. 3215–3223, Barcelona, Spain (2016)

  28. Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature based nonrigid registration: the PASHA algorithm. Comput. Vis. Image Underst. 89(2), 272–298 (2003)

    Article  Google Scholar 

  29. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Yoo, J.-C., Han, T.-H.: Fast normalized cross-correlation. Circuits Syst. Signal Process. 28(6), 819–843 (2009)

    Article  Google Scholar 

  31. Hossny, M., Nahavandi, S., Creighton, D.: Comments on’Information measure for performance of image fusion’. Electron. Lett. 44(18), 1066–1067 (2008)

    Article  Google Scholar 

  32. Castillo, R., Castillo, E., Fuentes, D., Ahmad, M., Wood, A., Ludwig, M., Guerrero, T.: A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive. Phys. Med. Biol. 58(9), 2861–2877 (2013)

    Article  Google Scholar 

  33. Hermann, S.: Evaluation of scan-line optimization for 3D medical image registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, pp. 3073–3080 (2014)

  34. Heinrich, M., Handels, H., Simpson, I.: Estimating large lung motion in COPD patients by symmetric regularised correspondence fields. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham, pp. 338–345 (2015)

  35. Polzin, T., Niethammer, M., Heinrich, M., Handels, H., Modersitzki, J.: Memory efficient LDDMM for lung CT. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham, pp. 28–36 (2016)

  36. Rühaak, J., Polzin, T., Heldmann, S., Simpson, I., Handels, H., Modersitzki, J., Heinrich, M.: Estimation of large motion in lung CT by integrating regularized keypoint correspondences into dense deformable registration. IEEE Trans. Med. Imaging 36(8), 1746–1757 (2017)

    Article  Google Scholar 

  37. Bredies, K., Lorenz, D.A., Reiterer, S.: Minimization of non-smooth non-convex functionals by iterative thresholding. J. Optim. Theory Appl. 165(1), 78–112 (2015)

    Article  MathSciNet  Google Scholar 

  38. Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9(4), 1756–1787 (2017)

    Article  MathSciNet  Google Scholar 

  39. Aganj, I., Yeo, B., Sabuncu, M., Fischl, B.: On removing interpolation and resampling artifacts in rigid image registration. IEEE Trans. Image Process. 22(2), 816–827 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the multidisciplinary team of liver, billiary and pancreatic tumors in Nanjing Drum Tower Hospital, China for providing liver CT images used in the second 2D numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziwei Nie or Xiaoping Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is financially supported by National Natural Science Foundation of China (Grant Nos. 11971229, 12090023)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Z., Li, C., Liu, H. et al. A Variational Model for Deformable Registration of Uni-modal Medical Images with Intensity Biases. J Math Imaging Vis 63, 1057–1068 (2021). https://doi.org/10.1007/s10851-021-01042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-021-01042-2

Keywords

Navigation