Skip to main content
Log in

One Way to Verify the Molecular Picture of Exotic Hadrons: From \(\pmb {DK}\) to \(\pmb {DDK/D{\bar{D}}^{(*)}K}\)

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Starting from 2003, a large number of the so-called exotic hadrons, such as X(3872) and \(D_{s0}^*(2317)\), were discovered experimentally. Since then, understanding the nature of these states has been a central issue both theoretically and experimentally. As many of these states are located close to two hadron thresholds, they are believed to be molecular states or at least contain large molecular components. We argue that if they are indeed molecular states, in the way that the deuteron is a bound state of proton and neutron, then molecular states of three or more hadrons are likely, in the sense that atomic nuclei are bound states of nucleons. Following this conjecture, we study the likely existence of DDK, \(D{\bar{D}}K\), and \(D{\bar{D}}^{*}K\) molecular states. We show that within the theoretical uncertainties of the two-body interactions deduced, they most likely exist. Furthermore, we predict their strong decays to help guide future experimental searches. In addition, we show that the same approach can indeed reproduce some of the known three-body systems from the two-body inputs, such as the deuteron-triton and the \(\varLambda (1405)\)-\({\bar{K}}NN\) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For the two-body decay of the \(D{\bar{D}}^*K\) bound state, see Ref. [43].

References

  1. M. Gell-Mann, CTSL-20, TID-12608 (1961). https://doi.org/10.2172/4008239

  2. Y. Ne’eman, Nucl. Phys. 26, 222 (1961). https://doi.org/10.1016/0029-5582(61)90134-1

    Article  Google Scholar 

  3. V.E. Barnes et al., Phys. Rev. Lett. 12, 204 (1964). https://doi.org/10.1103/PhysRevLett.12.204

    Article  ADS  Google Scholar 

  4. M. Gell-Mann, Phys. Lett. 8, 214 (1964). https://doi.org/10.1016/S0031-9163(64)92001-3

    Article  ADS  Google Scholar 

  5. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2 (CERN-TH-412, NP-14146, PRINT-64-170, 1964)

  6. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985). https://doi.org/10.1103/PhysRevD.32.189

    Article  ADS  Google Scholar 

  7. S. Capstick, N. Isgur, AIP. Conf. Proc. 132, 267 (1985). https://doi.org/10.1103/PhysRevD.34.2809

    Article  ADS  Google Scholar 

  8. S.K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003). https://doi.org/10.1103/PhysRevLett.91.262001

    Article  ADS  Google Scholar 

  9. B. Aubert et al., Phys. Rev. Lett. 90, 242001 (2003). https://doi.org/10.1103/PhysRevLett.90.242001

    Article  ADS  Google Scholar 

  10. S. Stepanyan et al., Phys. Rev. Lett. 91, 252001 (2003). https://doi.org/10.1103/PhysRevLett.91.252001

    Article  ADS  Google Scholar 

  11. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.P. Shen, C.E. Thomas, A. Vairo, C.Z. Yuan, Phys. Rept. 873, 1 (2020). https://doi.org/10.1016/j.physrep.2020.05.001

    Article  ADS  Google Scholar 

  12. R. Aaij et al., Phys. Rev. Lett. 115, 072001 (2015). https://doi.org/10.1103/PhysRevLett.115.072001

    Article  ADS  Google Scholar 

  13. R. Aaij et al., Phys. Rev. Lett. 122(22), 222001 (2019). https://doi.org/10.1103/PhysRevLett.122.222001

    Article  ADS  Google Scholar 

  14. R. Aaij, et al. arXiv:2012.10380 (2020)

  15. M.Z. Liu, Y.W. Pan, L.S. Geng, Phys. Rev. D 103(3), 34003 (2021). https://doi.org/10.1103/PhysRevD.103.034003

    Article  ADS  Google Scholar 

  16. J.X. Lu, M.Z. Liu, R.X. Shi, L.S. Geng. arXiv:2104.10303 (2021)

  17. X. Liu, Chin. Sci. Bull. 59, 3815 (2014). https://doi.org/10.1007/s11434-014-0407-2

    Article  Google Scholar 

  18. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, S. Yasui, PTEP 2016(6), 062C01 (2016). https://doi.org/10.1093/ptep/ptw045

  19. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rept. 639, 1 (2016). https://doi.org/10.1016/j.physrep.2016.05.004

    Article  ADS  Google Scholar 

  20. F.K. Guo, C. Hanhart, U.G. Meißner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90(1), 015004 (2018). https://doi.org/10.1103/RevModPhys.90.015004

    Article  ADS  Google Scholar 

  21. Y.R. Liu, H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019). https://doi.org/10.1016/j.ppnp.2019.04.003

    Article  ADS  Google Scholar 

  22. D. Besson et al., Phys. Rev. D 68, 032002 (2003). https://doi.org/10.1103/PhysRevD.68.032002. [Erratum: https://doi.org/10.1103/PhysRevD.75.119908 (2007)]

  23. P. Krokovny et al., Phys. Rev. Lett. 91, 262002 (2003). https://doi.org/10.1103/PhysRevLett.91.262002

    Article  ADS  Google Scholar 

  24. T. Barnes, F.E. Close, H.J. Lipkin, Phys. Rev. D 68, 054006 (2003). https://doi.org/10.1103/PhysRevD.68.054006

    Article  ADS  Google Scholar 

  25. E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 582, 39 (2004). https://doi.org/10.1016/j.physletb.2003.10.118

    Article  ADS  Google Scholar 

  26. J. Hofmann, M.F.M. Lutz, Nucl. Phys. A 733, 142 (2004). https://doi.org/10.1016/j.nuclphysa.2003.12.013

    Article  ADS  Google Scholar 

  27. F.K. Guo, P.N. Shen, H.C. Chiang, R.G. Ping, B.S. Zou, Phys. Lett. B 641, 278 (2006). https://doi.org/10.1016/j.physletb.2006.08.064

    Article  ADS  Google Scholar 

  28. D. Gamermann, E. Oset, D. Strottman, M.J. Vicente Vacas, Phys. Rev. D 76, 074016 (2007). https://doi.org/10.1103/PhysRevD.76.074016

  29. L. Liu, K. Orginos, F.K. Guo, C. Hanhart, U.G. Meissner, Phys. Rev. D 87(1), 014508 (2013). https://doi.org/10.1103/PhysRevD.87.014508

    Article  ADS  Google Scholar 

  30. M. Altenbuchinger, L.S. Geng, W. Weise, Phys. Rev. D 89(1), 014026 (2014). https://doi.org/10.1103/PhysRevD.89.014026

    Article  ADS  Google Scholar 

  31. D. Mohler, C.B. Lang, L. Leskovec, S. Prelovsek, R.M. Woloshyn, Phys. Rev. Lett. 111, 222001 (2013). https://doi.org/10.1103/PhysRevLett.111.222001

    Article  ADS  Google Scholar 

  32. C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, R.M. Woloshyn, Phys. Rev. D 90(3), 034510 (2014). https://doi.org/10.1103/PhysRevD.90.034510

    Article  ADS  Google Scholar 

  33. G.S. Bali, S. Collins, A. Cox, A. Schäfer, Phys. Rev. D 96(7), 074501 (2017). https://doi.org/10.1103/PhysRevD.96.074501

  34. M.L. Du, F.K. Guo, C. Hanhart, B. Kubis, U.G. Meißner, Phys. Rev. Lett. 126(19):192001

  35. C.B. Lang, D. Mohler, S. Prelovsek, R.M. Woloshyn, Phys. Lett. B 750, 17 (2015). https://doi.org/10.1016/j.physletb.2015.08.038

    Article  ADS  Google Scholar 

  36. T.W. Wu, M.Z. Liu, L.S. Geng, E. Hiyama, M.P. Valderrama, Phys. Rev. D 100(3), 034029 (2019). https://doi.org/10.1103/PhysRevD.100.034029

    Article  ADS  Google Scholar 

  37. M.Z. Liu, T.W. Wu, M. Pavon Valderrama, J.J. Xie, L.S. Geng, Phys. Rev. D 99(9), 094018 (2019). https://doi.org/10.1103/PhysRevD.99.094018

  38. S. Prelovsek, S. Collins, D. Mohler, M. Padmanath, S. Piemonte. arXiv:2011.02542 (2020)

  39. T.W. Wu, M.Z. Liu, L.S. Geng, Phys. Rev. D 103(3), 031501 (2021). https://doi.org/10.1103/PhysRevD.103.L031501

    Article  Google Scholar 

  40. M. Sanchez Sanchez, L.S. Geng, J.X. Lu, T. Hyodo, M.P. Valderrama, Phys. Rev. D98(5), 054001 (2018). https://doi.org/10.1103/PhysRevD.98.054001

  41. L. Ma, Q. Wang, U.G. Meißner, Chin. Phys. C 43(1), 014102 (2019). https://doi.org/10.1088/1674-1137/43/1/014102

  42. X.L. Ren, B.B. Malabarba, L.S. Geng, K.P. Khemchandani, A. Martínez Torres, Phys. Lett. B 785, 112 (2018). https://doi.org/10.1016/j.physletb.2018.08.034

  43. X.L. Ren, B.B. Malabarba, K.P. Khemchandani, A. Martinez Torres, JHEP 05, 103 (2019). https://doi.org/10.1007/JHEP05(2019)103

  44. Y. Huang, M.Z. Liu, Y.W. Pan, L.S. Geng, A. Martínez Torres, K.P. Khemchandani, Phys. Rev. D 101(1), 014022 (2020). https://doi.org/10.1103/PhysRevD.101.014022

  45. Y. Li et al., Phys. Rev. D 102(2), 112001 (2020). https://doi.org/10.1103/PhysRevD.102.112001

    Article  ADS  Google Scholar 

  46. R. Aaij et al., JHEP 08, 037 (2017). https://doi.org/10.1007/JHEP08(2017)037

    Article  ADS  Google Scholar 

  47. C.P. Shen et al., Phys. Rev. D 89(7), 072015 (2014). https://doi.org/10.1103/PhysRevD.89.072015

    Article  ADS  Google Scholar 

  48. M. Ablikim et al., Phys. Rev. Lett. 126(10), 102001 (2021). https://doi.org/10.1103/PhysRevLett.126.102001

    Article  ADS  Google Scholar 

  49. R. Aaij, et al., (2021)

  50. T.W. Wu, M.Z. Liu, L.S. Geng, E. Hiyama, M.P. Valderrama, W.L. Wang, Eur. Phys. J. C 80(9), 901 (2020). https://doi.org/10.1140/epjc/s10052-020-08483-w

    Article  ADS  Google Scholar 

  51. T. Yamazaki, Y. Akaishi, Phys. Lett. B 535, 70 (2002). https://doi.org/10.1016/S0370-2693(02)01738-0

    Article  ADS  Google Scholar 

  52. V.K. Magas, E. Oset, A. Ramos, H. Toki, Phys. Rev. C 74, 025206 (2006). https://doi.org/10.1103/PhysRevC.74.025206

    Article  ADS  Google Scholar 

  53. N.V. Shevchenko, A. Gal, J. Mares, Phys. Rev. Lett. 98, 082301 (2007). https://doi.org/10.1103/PhysRevLett.98.082301

    Article  ADS  Google Scholar 

  54. Y. Ikeda, T. Sato, Phys. Rev. C 76, 035203 (2007). https://doi.org/10.1103/PhysRevC.76.035203

    Article  ADS  Google Scholar 

  55. A. Arai, M. Oka, S. Yasui, Prog. Theor. Phys. 119, 103 (2008). https://doi.org/10.1143/PTP.119.103

    Article  ADS  Google Scholar 

  56. T. Nishikawa, Y. Kondo, Phys. Rev. C 77, 055202 (2008). https://doi.org/10.1103/PhysRevC.77.055202

    Article  ADS  Google Scholar 

  57. A. Dote, T. Hyodo, W. Weise, Phys. Rev. C 79, 014003 (2009). https://doi.org/10.1103/PhysRevC.79.014003

    Article  ADS  Google Scholar 

  58. S. Wycech, A.M. Green, Phys. Rev. C 79, 014001 (2009). https://doi.org/10.1103/PhysRevC.79.014001

    Article  ADS  Google Scholar 

  59. T. Uchino, T. Hyodo, M. Oka, Nucl. Phys. A 868–869, 53 (2011). https://doi.org/10.1016/j.nuclphysa.2011.08.005

    Article  ADS  Google Scholar 

  60. N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B 712, 132 (2012). https://doi.org/10.1016/j.physletb.2012.04.055

    Article  ADS  Google Scholar 

  61. M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005). https://doi.org/10.1103/PhysRevLett.94.212303

    Article  ADS  Google Scholar 

  62. T. Yamazaki et al., Hyperfine Interact. 193(1–3), 181 (2009). https://doi.org/10.1007/s10751-009-9997-5

    Article  ADS  Google Scholar 

  63. T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010). https://doi.org/10.1103/PhysRevLett.104.132502

    Article  ADS  Google Scholar 

  64. A.O. Tokiyasu et al., Phys. Lett. B 728, 616 (2014). https://doi.org/10.1016/j.physletb.2013.12.039

    Article  ADS  Google Scholar 

  65. Y. Ichikawa, et al., PTEP 2015(2), 021D01 (2015). https://doi.org/10.1093/ptep/ptv002

  66. S. Ajimura et al., Phys. Lett. B 789, 620 (2019). https://doi.org/10.1016/j.physletb.2018.12.058

    Article  ADS  Google Scholar 

  67. Y. Sada, et al., PTEP 2016(5), 051D01 (2016). https://doi.org/10.1093/ptep/ptw040

  68. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998). https://doi.org/10.1016/S0375-9474(98)00170-5

    Article  ADS  Google Scholar 

  69. N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995). https://doi.org/10.1016/0375-9474(95)00362-5

    Article  ADS  Google Scholar 

  70. J.A. Oller, U.G. Meissner, Phys. Lett. B 500, 263 (2001). https://doi.org/10.1016/S0370-2693(01)00078-8

    Article  ADS  Google Scholar 

  71. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002). https://doi.org/10.1016/S0375-9474(01)01312-4

    Article  ADS  Google Scholar 

  72. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 725, 181 (2003). https://doi.org/10.1016/S0375-9474(03)01598-7

    Article  ADS  Google Scholar 

  73. B. Borasoy, R. Nissler, W. Weise, Phys. Rev. Lett. 94, 213401 (2005). https://doi.org/10.1103/PhysRevLett.94.213401

    Article  ADS  Google Scholar 

  74. T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008). https://doi.org/10.1103/PhysRevC.77.035204

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. P. Valderrama, E. Hiyama, Alberto Martínez Torres, Kanchan P. Khemchandani, Xiu-Lei Ren, Yin Huang, and Ya-Wen Pan for collaborations on some of the topics covered in this talk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Sheng Geng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partly supported by the National Natural Science Foundation of China under Grants Nos.11735003, 11975041, and 11961141004, and the fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, TW., Liu, MZ. & Geng, LS. One Way to Verify the Molecular Picture of Exotic Hadrons: From \(\pmb {DK}\) to \(\pmb {DDK/D{\bar{D}}^{(*)}K}\). Few-Body Syst 62, 38 (2021). https://doi.org/10.1007/s00601-021-01619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01619-y

Navigation