Skip to main content
Log in

Photoionization cross-section in a GaAs spherical quantum shell: the effect of parabolic confining electric potentials

  • Regular Article – Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Theoretical study on binding energies due to a centred charged impurity and the associated photoionization cross-section (PCS) in a spherical shell are presented. This was achieved by solving the Schrödinger equation within the effective mass approach. Intrinsic to the spherical quantum shell may be the parabolic potential or the shifted parabolic potential, each superimposed on an infinite spherical square well. Results indicate that the parabolic potential enhances binding energies while the shifted parabolic potential diminishes them. These electric potentials considerably modify photoionization cross section in two ways. One, the parabolic potential blueshifts peaks of PCS while the shifted parabolic potential redshifts the peaks. Second, the parabolic potential decreases the magnitude of the peaks of the PCS while the shifted parabolic potential increases the magnitudes of the peaks. In essence, these two potential may be used to manipulate PCS in quantum structures.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Results were obtained using Maple mathematical software.]

References

  1. P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, L. Wang, The fabrication of res2 flowers at controlled locations by chemical vapor deposition. Physica E 89, 115–118 (2017). https://doi.org/10.1016/j.physe.2017.02.004

    Article  ADS  Google Scholar 

  2. L. Meng, J. Feng, Y. Yu, W. Yan, H. Li, X. Wang, and X. Yan. Formation mechanism of 2d ws2 with different morphology by chemical vapor deposition. Physica E, 114(113641) (2019). https://doi.org/10.1016/j.physe.2019.113641

  3. D. Cho, J. Park, T. Kim, S. Jeon, Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications. J. Semiconductors 40(11), 111605 (2019). https://doi.org/10.1088/1674-4926/40/11/111605

    Article  ADS  Google Scholar 

  4. S. Rasappa, H. Hulkonen, L. Schulte, S. Ndoni, J. Reuna, T. Salminen, T. Niemi, High molecular weight block copolymer lithography for nanofabrication of hard mask and photonic nanostructures. J. Colloid Interface Sci. 534, 420–429 (2019). https://doi.org/10.1016/j.jcis.2018.09.040

    Article  ADS  Google Scholar 

  5. R. R. Reznik, K. P. Kotlyar, N. V. Kryzhanovskaya, S. V. Morozov, and G. E. Cirlin (2019) Synthesis by molecular beam epitaxy and properties of ingan nanostructures of branched morphology on a silicon substrate. Tech. Phys. Lett., 45(1111-1113). https://doi.org/10.1134/S1063785019110129

  6. Q. Sun, H. Gao, X. Yao, K. Zheng, P. Chen, W. Lu, J. Zou, Au-catalysed free-standing wurtzite structured inas nanosheets grown by molecular beam epitaxy. Nano Res. 12(11), 2718–2722 (2019). https://doi.org/10.1007/s12274-019-2504-7

    Article  Google Scholar 

  7. F. Dvorak, R. Zazpe, M. Krbal, H. Sopha, J. Prikryl, S. Ng, L. Hromadko, F. Bures, J.M. Macak, One-dimensional anodic tio2nanotubes coated by atomic layer deposition: towards advanced applications. Appl. Materials Today 14, 1–20 (2019). https://doi.org/10.1016/j.apmt.2018.11.005

    Article  Google Scholar 

  8. E. Janik, A. Wachnicka, E. Guziewicz, M. Godlewski, S. Kret, W. Zaleszczyk, E. Dynowska, A. Presz, G. Karczewski, T. Wojtowicz, Znte-zno core-shell radial heterostructures grown by the combination of molecular beam epitaxy and atomic layer deposition. Nanotechnology 21, 015302 (2010)

    Article  ADS  Google Scholar 

  9. X.-E. Zhang, Nanobiology-symphony of bioscience and nanoscience. Sci China Life Sci 63(8), 1099–1102 (2020). https://doi.org/10.1007/s11427-020-1741-y

    Article  Google Scholar 

  10. Y. He, C. Fen, S.-T. Lee, Silicon nanostructures for bioapplications. Nano Today 5, 282–295 (2010)

    Article  Google Scholar 

  11. S Gunalan, R Sivaraj, Rajendran V. Green synthesized zno nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci., 22:693–700 (2012)

  12. H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28, 403–433 (2016). https://doi.org/10.1002/adma.201503534

    Article  ADS  Google Scholar 

  13. Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, S. Jin, Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nature Reviews. Materials, 4(3) (2019). https://doi.org/10.1038/s41578-019-0080-9

  14. J. Jie, W. Zheng, I. Bello, C.-S. Lee, S.-T. Lee, One-dimensional ii–vi nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5, 313–336 (2010)

    Article  Google Scholar 

  15. A.B. Djurišić, A.M.C. Ng, X.Y. Chen, Zno nanostructures for optoelectronics: material properties and device applications. Prog. Quant. Electron. 34, 191–259 (2010)

    Article  ADS  Google Scholar 

  16. I. Llatser, C. Kremers, A. Cabellos-Aparicio, M. Jornet J, D.N. Chigrin, E. Alarcón, Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostruct., 10:353–358 (2012)

  17. A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayh, Hybrid nanostructures for energy storage applications. Adv. Mater. 24, 5045–5064 (2012)

    Article  Google Scholar 

  18. J. Jiang, Y. Li, J. Liu, C. Yuan, X. Huang, X.W. (D) Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater., 24:5166–5180 (2012)

  19. E. Stratakis, E. Kymakis, Nanoparticle-based plasmonic organic photovoltaic devices. Mater. Today 16, 133–146 (2013)

    Article  Google Scholar 

  20. A.K. Menon, B.K. Kupta, Nanotechnology: a data storage perspective. Nanostruct. Mater., 11:965–986 (1999)

  21. P. Lodahl, Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2018). https://doi.org/10.1088/2058-9565/aa91bb

    Article  ADS  Google Scholar 

  22. I. Cesar, A. Kay, J.A.G. Martinez, M. Grätzel, Translucent thin film \(fe_2o_3\) photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of si-doping. J. Am. Chem. Soc. 128, 4582–4583 (2006)

    Article  Google Scholar 

  23. S. Maldonado, S. Morin, K.J. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44, 1429–1437 (2006)

    Article  Google Scholar 

  24. Y. Shao, J. Sui, G. Yin, Y. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B-Environ. 79, 89–99 (2008)

    Article  Google Scholar 

  25. E.B. Al, E. Kasapoglu, S. Sakiroglu, C.A. Duque, I. Sökmen, Binding energy of donor impurity states and optical absorption in the tietz-hua quantum well under an applied electric field. J. Mol. Struct. 1157, 288–291 (2018). https://doi.org/10.1016/j.molstruc.2017.12.068

    Article  ADS  Google Scholar 

  26. M. Hu, H. Wang, Q. Gong, S. Wang, External electric field effect on the binding energy of a hydrogenic donor impurity in ingaasp/inp concentric double quantum rings. Int. J. Modern Phys. B 32(11), 1850138 (2018). https://doi.org/10.1142/S0217979218501382

    Article  ADS  MathSciNet  Google Scholar 

  27. A.L. Vartanian, A.L. Asatryan, A.A. Kirakosyan, K.A. Vardanyan, Influence of image charge effect on the binding energy of hydrogen-like donor impurity in a near-surface quantum well under transverse electric field. Physica E 106, 1–4 (2019). https://doi.org/10.1016/j.physe.2018.10.022

    Article  ADS  Google Scholar 

  28. S. Pratap, Transmission and ldos in case of zgnr with and without magnetic field. Superlattice. Microst. 104, 540–546 (2017). https://doi.org/10.1016/j.spmi.2017.02.046

    Article  ADS  Google Scholar 

  29. E Kasapoglu. Sari, H. Sökmen I, Binding energy of impurity states in an inverse parabolic quantum well under magnetic field. Physica B, 390:216–219 (2007)

  30. E.M. Kazaryan, A.V. Meliksetyan, L.S. Petrosyan, H.A. Sarkisyan, Impurity states of narrow-gap semiconductor parabolic quantum dot in the presence of extremely strong magnetic field. Physica E 31, 228–231 (2006)

    Article  ADS  Google Scholar 

  31. E. Kasapoglu, H. Sari, I. Sökmen, Density of impurity states of hydrogenic impurities in an inverse parabolic quantum well under the magnetic field. Physica B, 392:213–216 (2007)

  32. S. Elagoz, P. Başer, U. Yahşi, The magnetic field dependency of hydrogenic impurity binding energy under inverse lateral parabolic potential. Physica B 403, 3879–3882 (2008)

    Article  ADS  Google Scholar 

  33. E. C. Niculescu, C. Stan, G. Tiriba, and Truşcǎ C. Magnetic field control of absorption coefficient and group index in an impurity doped quantum disc. Eur. Phys. J. B, 90:100 (2017) https://doi.org/10.1140/epjb/e2017-80138-0

  34. Effects of hydrostatic pressure and an intense laser, A Miguez, R Franco, and Silva-Valencia J. Donor and acceptor states in gaas-(ga, al)as quantum dots. Int. J. Mod. Phys. B 24, 5761–5770 (2010)

  35. M. Santhi, A.J. Peter, C. Yoo, Hydrostatic pressure on optical absorption and refractive index changes of a shallow hydrogenic impurity in a gaas/gaalas quantum wire. Superlattice. Microst. 52, 234–244 (2012)

    Article  ADS  Google Scholar 

  36. E. Sadeghi, A. Avazpour, Binding energy of an off-center donor impurity in ellipsoidal quantum dot with parabolic confinement potential. Physica B 406, 241–244 (2011)

    Article  ADS  Google Scholar 

  37. L. Dong-Ming, X. Wen-Fang (2009) Binding energy of an off-center \(d^{-}\) in a spherical quantum dot. Commun. Theor. Phys.(Beijing, China), 51:919–922

  38. M. Cristea, E.C. Niculescu, Off-center shallow donors in a spherical si quantum dot with dielectric border. Int. J. Quantum Chem. 112, 1737–1745 (2011)

    Article  Google Scholar 

  39. C.-Y. Hsieh, Lower lying states of hydrogenic impurity in a multi-layer quantum dot. Chinese J. Phys. 38, 478–490 (2000)

    ADS  Google Scholar 

  40. S. Aktas, F.K. Boz, The binding energy of hydrogenic impurity in multilayered spherical quantum dot. Physica E 40, 753–758 (2008)

    Article  ADS  Google Scholar 

  41. H. Taş, M. Şahin, The electronic properties of a core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity. J. Appl. Phys. 111, 083702 (2012)

  42. S. M’zerd, M. El Haouari, M. Aghoutane, M. El-Yadri, E. Feddi, F. Dujardin, I. Zorkani, A. Jorio, M. Sadoqi, and G. Long. Electric field effect on the photoionization cross section of a single dopant in a strained \(alas/gaas\) spherical core/shell quantum dot. J. Appl. Phys., 124:164303, 2018. https://doi.org/10.1063/1.5046859

  43. L. Shi, Z.W. Yan, Stark shift and photoionization cross section of on-center and off-center donor impurity in a core/shell ellipsoidal quantum dot. Physica E 98, 111–117 (2018). https://doi.org/10.1016/j.physe.2017.12.034

    Article  ADS  Google Scholar 

  44. E. Feddi, M. El-Yadri, F. Dujardin, R.L. Restrepo, C.A. Duque, Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot. J. Appl. Phys. 121, 064303 (2017). https://doi.org/10.1063/1.4975648

    Article  ADS  Google Scholar 

  45. E. Iqraoun, A. Sali, A. Rezzouk, E. Feddi, F. Dujardin, M.E. Mora-Ramos, C.A. Duque, Donor impurity-related photoionization cross section in gaas cone-like quantum dots under applied electric field. Philosophical Mag. 97(18), 1445–1463 (2017). https://doi.org/10.1080/14786435.2017.1302613

    Article  ADS  Google Scholar 

  46. M. Tshipa, The effects of cup-like and hill-like parabolic confining potentials on photoionization cross section of a donor in a spherical quantum dot. Eur. Phys. J. B 89, 177 (2016). https://doi.org/10.1140/epjb/e2016-60988-6

  47. M. Tshipa (2017) Photoionization cross section in a spherical quantum dot: Effects of some parabolic con1ning electric potentials. Condensed Matter Physics, , Vol., 20(2): 23703: 1-9 https://doi.org/10.5488/CMP.20.23703

  48. E.R. Arriola, A. Zarzo, J.S. Dehesa, Spectral properties of the biconfluent heun differential equation. J. Comput. Appl. Math. 37, 161–169 (1991)

    Article  MathSciNet  Google Scholar 

  49. A. Roseau, On the solutions of the biconfluent heun equations. Bull. Belg. Math. Soc. 9, 321–342 (2002)

    MathSciNet  MATH  Google Scholar 

  50. S. Belmehdi, J.-P. Chehab, Integral representation of the solutions to the heun’s biconfluent equation. Abstr. Appl. Anal. 4, 295–306 (2004)

  51. E.S. Cheb-Terrab, Solutions for the general, confluent and biconfluent heun equations and their connection with abel equations. J. Phys. A: Mth. Gen. 37, 9923–9949 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MT: Conceptualization of this study, obtaining solutions, writing - original draft preparation and simulation. LKS: Validation, reviewing and editing. SP: Writing, reviewing and editing. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Moletlanyi Tshipa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tshipa, M., Sharma, L.K. & Pratap, S. Photoionization cross-section in a GaAs spherical quantum shell: the effect of parabolic confining electric potentials. Eur. Phys. J. B 94, 129 (2021). https://doi.org/10.1140/epjb/s10051-021-00137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00137-4

Navigation