Skip to main content
Log in

Exponential-Ant Cuckoo Search Optimization for image deblurring with spinal cord images based on kernel estimation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In image-related applications, the recorded images are the blurry version of the original image that usually depicts any scene. Due to the optical aberrations, atmospheric distortions, and motion of objects in the scene, blur occurs in the images and degrades image quality. Various image deblurring methods are modeled in the existing works, but accurately recovering the exact true image from the single recorded image or the set of images still results in challenging medical imaging applications. Thus, an effective image deblurring method named Exponential-Ant Cuckoo Search Optimization (Exponential-ACSO) is developed in this research to find the spatial information from the blurred image. The proposed Exponential-ACSO is designed by integrating the Exponential Weighted Moving Average (EWMA) with Ant Lion Optimization (ALO) and Cuckoo Search (CS) algorithm. The computation of new pixel values for noisy pixels makes the image deblurring process more robust and accurate. The objective function is considered to find the optimal fitness value for the parameters of kernel estimation. However, the proposed Exponential-ACSO showed better performance for the metrics, like peak signal-to-noise ratio (PSNR), second derivative like the measure of enhancement (SDME), and structural similarity index (SSIM) with the values 29.756, 33.562, and 0.6988, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang, J., Huang, T.Z.: A nonstationary accelerating alternating direction method for frame-based Poissonian image deblurring. J. Comput. Appl. Math. 352, 181–193 (2019)

    Article  MathSciNet  Google Scholar 

  2. Sharma, P., Dubey, A.K., Goyal, A.: Efficient image deblurring using alpha plane blending on images recovered with linearly varied point spread function (PSF). In: Hu, Y.-C., Tiwari, S., Mishra, K.K., Trivedi, M.C. (eds.) Ambient Communications and Computer Systems, pp. 509–522. Springer, Singapore (2019)

    Chapter  Google Scholar 

  3. Ljubenović, M., Figueiredo, M.A.: Plug-and-play approach to class-adapted blind image deblurring. Int. J. Doc. Anal. Recognit. (IJDAR) 22(2), 79–97 (2019)

    Article  Google Scholar 

  4. Ople, J.J.M., Yeh, P.Y., Sun, S.W., Tsai, I.T., Hua, K.L.: Multi-scale neural network with dilated convolutions for image deblurring. IEEE Access 8, 53942–53952 (2020)

    Article  Google Scholar 

  5. Miao, S. and Zhu, Y., "Handling noise in image deblurring via joint learning", arXiv preprint arXiv:2001.09730, 2020.

  6. Ma, T.H., Huang, T.Z., Zhao, X.L., Lou, Y.: Image deblurring with an inaccurate blur kernel using a group-based low-rank image prior. Inf. Sci. 408, 213–233 (2017)

    Article  Google Scholar 

  7. Lu, B., Chen, J.C. and Chellappa, R., Unsupervised domain-specific deblurring via disentangled representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10225–10234, (2019)

  8. Adam, T., Paramesran, R.: Hybrid non-convex second-order total variation with applications to non-blind image deblurring. SIViP 14(1), 115–123 (2020)

    Article  Google Scholar 

  9. Li, D.W., Lai, L.J., Huang, H.: Defocus hyperspectral image deblurring with adaptive reference image and scale map. J. Comput. Sci. Technol. 34(3), 569–580 (2019)

    Article  Google Scholar 

  10. Peña, F.A.G., Fernández, P.D.M., Ren, T.I., Leandro, J.D.J.G., Nishihara, R.M.: Burst ranking for blind multi-image deblurring. IEEE Trans. Image Process. 29, 947–958 (2019)

    Article  MathSciNet  Google Scholar 

  11. Zhang, X., Wang, R., Jiang, X., Wang, W., Gao, W.: Spatially variant defocus blur map estimation and deblurring from a single image. J. Vis. Commun. Image Represent. 35, 257–264 (2016)

    Article  Google Scholar 

  12. Chen, H., Fan, Y., Wang, Q., Li, Z.: Morphological component image restoration by employing bregmanized sparse regularization and anisotropic total variation. Circuits, Syst. Signal Process. 39, 1–26 (2019)

    MATH  Google Scholar 

  13. Yang, C., Wang, W., Feng, X., Liu, X.: Weighted-l1-method-noise regularization for image deblurring. Signal Process. 157, 14–24 (2019)

    Article  Google Scholar 

  14. Indranil Guha, Syed Ahmed Nadeem, Chenyu You, Xiaoliu Zhang, Steven M. Levy, Ge Wang, James C. Torner, and Punam K. Saha, Deep learning based high-resolution reconstruction of trabecular bone microstructures from lowresolution CT scans using GAN-CIRCLE. In: Proc. SPIE Medical Imaging, vol. 11317, (2020)

  15. Mousa, M.A., Li, H.B., Abdalla, H.B.: Optimization driven adam-cuckoo search-based deep belief network classifier for data classification. IEEE Access 8(1), 105542 (2020)

    Google Scholar 

  16. AI Sibahee, M.A., Abdalla, H.B., Ahmed, A.M.: Optimization driven MapReduce framework for indexing and retrieval of big data. KSII Trans. Internet Inf. Syst. (2020). https://doi.org/10.3837/tiis.2020.05.002

    Article  Google Scholar 

  17. Alam, M.Z., Qian, Q., Gunturk, B.K.: Space-variant blur kernel estimation and image deblurring through kernel clustering. Signal Process.: Image Commun. 76, 41–55 (2019)

    Google Scholar 

  18. He, L., Wang, Y., Xiang, Z.: Support driven wavelet frame-based image deblurring. Inf. Sci. 479, 250–269 (2019)

    Article  Google Scholar 

  19. Pham, C.T., Tran, T.T.T., Gamard, G.: An efficient total variation minimization method for image restoration. Informatica 31(3), 539–560 (2020)

    Article  MathSciNet  Google Scholar 

  20. Wang, M., Hou, S., Li, H., Li, F.: Generative image deblurring based on multi-scaled residual adversary network driven by composed prior-posterior loss. J. Vis. Commun. Image Represent. 65, 102648 (2019)

    Article  Google Scholar 

  21. Chen, H., Yan, K., Zhang, J. and Li, Z., Simultaneous cartoon-plus-texture image deconvolution by using variational image decomposition. In: Optoelectronic Imaging and Multimedia Technology III, International Society for Optics and Photonics, vol. 9273, p. 92732Q, (2014)

  22. Ruud, J., Sloun, G.V., Cohen, R., Eldar, Y.C.: Deep learning in ultrasound imaging. IEEE 108(1), 11–29 (2020)

    Article  Google Scholar 

  23. Zhang, H., Dai, Y., Li, H. and Koniusz, P., Deep stacked hierarchical multi-patch network for image deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5978–5986, (2019)

  24. Lim, Y., Narayanan, S. and Nayak, K.S., Deblurring for spiral real-time MRI using convolutional neural networks. arXiv preprint arXiv:2001.09427, (2020)

  25. Holla, K.S., Jidesh, P., Bini, A.A.: Multiple-coil magnetic resonance image denoising and deblurring with nonlocal total bounded variation. IETE Tech. Rev. 37, 1–6 (2019)

    Google Scholar 

  26. Peng, J., Shao, Y., Sang, N., Gao, C.: Joint image deblurring and matching with feature-based sparse representation prior. Pattern Recognit. 103, 107300 (2020)

    Article  Google Scholar 

  27. Saccucci, M.S., Amin, R.W., Lucas, J.M.: Exponentially weighted moving average control schemes with variable sampling intervals. Commun. Statistics-Simulation Comput. 21(3), 627–657 (1992)

    Article  MathSciNet  Google Scholar 

  28. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  29. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Computers 29(1), 17–35 (2013)

    Article  Google Scholar 

  30. Chena, Z., Chena, Y., Wua, L., Chenga, S., Lin, P.: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energy Convers. Manage. 198, 111793 (2019)

    Article  Google Scholar 

  31. Pan, J., Liu, R., Su, Z., Gu, X.: Kernel estimation from salient structure for robust motion deblurring. Signal Process.: Image Commun. 28(9), 1156–1170 (2013)

    Google Scholar 

  32. Osteoporotic vertebral fractures dataset, "http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets#Dataset_9.3A_Automatic_vertebral_fracture_analysis_and_identification_from_VFA_by_DXA", accessed on May 2020.

  33. Pan, J., Sun, D., Pfister, H., Yang, M.-H.: De-blurring images via dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2315–2328 (2017)

    Article  Google Scholar 

  34. Lim Y, Narayanan S, Nayak KS, De-blurring for spiral real-time MRI using convolutional neural networks. arXiv preprint, (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Priya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, S., Letitia, S. Exponential-Ant Cuckoo Search Optimization for image deblurring with spinal cord images based on kernel estimation. SIViP 16, 339–347 (2022). https://doi.org/10.1007/s11760-021-01929-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01929-y

Keywords

Navigation