Skip to main content
Log in

Highly Sensitive U-Shaped Micro-channel Photonic Crystal Fiber–Based Plasmonic Biosensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A simple design of photonic crystal fiber (PCF)–based surface plasmon resonance (SPR) sensor is proposed and investigated numerically for the detection of large analyte refractive index (RI) range. An open U-shaped analyte channel is introduced at the top side and along the length of the fiber to detect unknown analytes. The U-shaped channel helps to generate large amount of surface plasmon resonance on the plasmonic metal layer (gold) by reducing the distance between core and sensing medium. The optical properties and sensitivity of the sensor are analyzed by using the finite element method. The simulation results suggest that the sensor can detect analyte refractive index ranging from 1.33 to 1.44 with maximum wavelength sensitivity of 66,000 nm/RIU and resolution of 1.52 × 10−06 RIU. It also exhibits the maximum amplitude sensitivity of 2,940 RIU−1 with sensor resolution of 3.40 × 10−05 RIU. Furthermore, a good figure of merit (FOM) of 1734 RIU−1 and maximum limit of detection (LOD) of 2.29 × 10−11 RIU2/nm are achieved by the proposed sensor. Additionally, the fabrication tolerance in terms of pitch, air-hole diameter and channel size is investigated. Finally, we can anticipate that the sensor will be a suitable candidate to detect unknown analytes such as biological or biochemical samples for its high sensitivity with wide sensing range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The data are generated using COMSOL Multiphysics software. The raw data are available from the corresponding author on reasonable request.

Code Availability

Codes are available from the corresponding author on reasonable request.

References

  1. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216(4):398–410

    Article  CAS  Google Scholar 

  2. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch A 23(12):2135–2136

    Article  CAS  Google Scholar 

  3. Gupta B, Sharma AK (2005) Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens Actuators B Chem 107(1):40–46

    Article  CAS  Google Scholar 

  4. Piliarik M, Homola J, Manıková Z, Čtyroký J (2003) Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens Actuators B Chem 90(1–3):236–242

    Article  CAS  Google Scholar 

  5. Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens Actuators B Chem 160(1):623–631

    Article  CAS  Google Scholar 

  6. Peng L, Shi F, Zhou G, Ge S, Hou Z, Xia C (2015) A surface plasmon biosensor based on a D-shaped microstructured optical fiber with rectangular lattice. IEEE Photon J 7(5):1–9

    Article  Google Scholar 

  7. Hassani A, Skorobogatiy M (2009) Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. Josa B 26(8):1550–1557

    Article  CAS  Google Scholar 

  8. Shuai B, Xia L, Liu D (2012) Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt Express 20(23):25858–25866

    Article  Google Scholar 

  9. Dash JN, Jha R (2014) SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photon Technol Lett 26(6):595–598

    Article  CAS  Google Scholar 

  10. Yang X, Lu Y, Liu B, Yao J (2017) Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2):489–496

    Article  CAS  Google Scholar 

  11. Bing P, Yao J, Lu Y, Li Z (2012) A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels. Opt Appl 42(3):493–501

    Google Scholar 

  12. Luan N, Yao J (2016) High refractive index surface plasmon resonance sensor based on a silver wire filled hollow fiber. IEEE Photon J 8(1):1–9

    Google Scholar 

  13. Luan N, Zhao L, Lian Y, Lou S (2018) A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core. IEEE Photon J 10(5):1–7

    Article  CAS  Google Scholar 

  14. Zhao L, Han H, Luan N, Liu J, Song L, Hu Y (2019) A temperature plasmonic sensor based on a side opening hollow fiber filled with high refractive index sensing medium. Sensors 19(17):3730

    Article  CAS  Google Scholar 

  15. An G, Li S, Yan X, Zhang X, Yuan Z, Wang H, Zhang Y, Hao X, Shao Y, Han Z (2017) Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics 12(2):465–471

    Article  Google Scholar 

  16. Lu Y, Yang X, Wang M, Yao J (2015) Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires. Electron Lett 51(21):1675–1677

    Article  Google Scholar 

  17. Liu C, Yang L, Lu X, Liu Q, Wang F, Lv J, Sun T, Mu H, Chu PK (2017) Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt Express 25(13):14227–14237

    Article  CAS  Google Scholar 

  18. Han H, Hou D, Zhao L, Luan N, Song L, Liu Z, Lian Y, Liu J, Hu Y (2020) A large detection-range plasmonic sensor based on an H-shaped photonic crystal fiber. Sensors 20(4):1009

    Article  CAS  Google Scholar 

  19. Gomez-Cardona N, Reyes-Vera E, Torres P (2020) High sensitivity refractive index sensor based on the excitation of long-range surface plasmon polaritons in H-shaped optical fiber. Sensors 20(7):2111

    Article  CAS  Google Scholar 

  20. Li T, Zhu L, Yang X, Lou X, Yu L (2020) A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors 20(3):741

    Article  Google Scholar 

  21. Chen Y, Xie Q, Li X, Zhou H, Hong X, Geng Y (2016) Experimental realization of D-shaped photonic crystal fiber SPR sensor. J Phys D Appl Phys 50(2):025101

  22. Wiederhecker G, Cordeiro CMdB, Couny F, Benabid F, Maier S, Knight J, Cruz C, Fragnito H (2007) Field enhancement within an optical fibre with a subwavelength air core. Nat Photonics 1(2):115–118

    Article  CAS  Google Scholar 

  23. van Brakel A, Grivas C, Petrovich MN, Richardson DJ (2007) Micro-channels machined in microstructured optical fibers by femtosecond laser. Opt Express 15(14):8731–8736

    Article  Google Scholar 

  24. Wang F, Yuan W, Hansen O, Bang O (2011) Selective filling of photonic crystal fibers using focused ion beam milled microchannels. Opt Express 19(18):17585–17590

    Article  CAS  Google Scholar 

  25. Martelli C, Olivero P, Canning J, Groothoff N, Gibson B, Huntington S (2007) Micromachining structured optical fibers using focused ion beam milling. Opt Lett 32(11):1575–1577

    Article  Google Scholar 

  26. Cordeiro CM, de Matos CJ, dos Santos EM, Bozolan A, Ong JS, Facincani T, Chesini G, Vaz AR, Cruz CHB (2007) Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre. Meas Sci Technol 18(10):3075

    Article  CAS  Google Scholar 

  27. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  CAS  Google Scholar 

  28. Sazio PJ, Amezcua-Correa A, Finlayson CE, Hayes JR, Scheidemantel TJ, Baril NF, Jackson BR, Won DJ, Zhang F, Margine ER, Gopalan V, Crespi VH, Baddinh JV (2006) Microstructured optical fibers as high-pressure microfluidic reactors. Sci 311(5767):1583–1586

    Article  CAS  Google Scholar 

  29. Boehm J, François A, Ebendorff-Heidepriem H, Monro TM (2011) Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors. Plasmonics 6(1):133–136

    Article  CAS  Google Scholar 

  30. Vial A, Grimault A-S, Macías D, Barchiesi D, De La Chapelle ML (2005) Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8):085416

  31. Reeves WH, Knight J, Russell PSJ, Roberts P (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express 10(14):609–613

    Article  Google Scholar 

  32. Liu Q, Yan B, Liu J (2019) U-shaped photonic quasi-crystal fiber sensor with high sensitivity based on surface plasmon resonance. Appl Phys Express 12(5):052014

  33. Ge S, Shi F, Zhou G, Liu S, Hou Z, Peng L (2016) U-shaped photonic crystal fiber based surface plasmon resonance sensors. Plasmonics 11(5):1307–1312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Tanvir Ahmed conceived the idea, designed the system model, simulated the model, collected data, produced the results, and wrote the manuscript. Firoz Haider made revisions and format paper according to the journal guidelines. Rifat Ahmmed Aoni and Rajib Ahmed made revisions and finalize the paper.

Corresponding author

Correspondence to Tanvir Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T., Haider, F., Aoni, R.A. et al. Highly Sensitive U-Shaped Micro-channel Photonic Crystal Fiber–Based Plasmonic Biosensor. Plasmonics 16, 2215–2223 (2021). https://doi.org/10.1007/s11468-021-01477-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01477-8

Keywords

Navigation