Skip to main content
Log in

A Detailed Investigation in the Enhancement Factor of Surface-Enhanced Raman Scattering in Simulation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The enhancement factor of surface-enhanced Raman scattering (SERS) is usually approximated by the fourth power of local electric field-enhanced strength. However, the applicability of the plane wave approximation used in this method remains a major problem in the theoretical study of SERS and the comparison with experiment results. In this work, we simultaneously calculated the local incident field enhancement factor under plane wave excitation and emission enhancement factor of a dipole in common SERS structures. For isolated particles and dimers, the local field enhancement factors are in good agreement with the emission enhancement factors. Nevertheless, the fourth power approximation method fails to predict the enhancement factors for structures on the substrate. The results show that when the SERS structures locate on the substrate, the local field method under-estimates the enhancement factor. The Purcell effect was used and compared with the emission enhancement. It indicates that the Purcell factor matches the emission enhancement quite well for the particles in homogeneous medium, while the Purcell factor over-estimates the emission enhancement for the particles on the substrate. These results are helpful for the SERS studies and the enhancement factor calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  2. Ma Y, Promthaveepong K, Li N (2017) Chemical sensing on a single SERS particle. ACS sensors 2(1):135–139

    Article  CAS  Google Scholar 

  3. Schlücker S (2014) Surface-Enhanced raman spectroscopy: Concepts and chemical applications. Angew Chem Int Ed 53(19):4756–4795

    Article  Google Scholar 

  4. Li H, Jiang J, Wang Z, Wang X, Liu X, Yan Y, Li C (2017) A high performance and highly-controllable core-shell imprinted sensor based on the surface-enhanced Raman scattering for detection of R6G in water. J Colloid Interface Sci 501:86–93

    Article  CAS  Google Scholar 

  5. Karthick Kannan P, Shankar P, Blackman C, Chung C-H (2019) Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv Mater 31(34):1803432. https://doi.org/10.1002/adma.201803432

    Article  CAS  Google Scholar 

  6. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: Materials, applications, and the future. Mater Today 15(1–2):16–25

    Article  CAS  Google Scholar 

  7. Song X, Wang Y, Zhao F, Li Q, Ta HQ, Rümmeli MH, Tully CG, Li Z, Yin W-J, Yang L (2019) Plasmon-free surface-enhanced Raman spectroscopy using metallic 2D materials. ACS nano 13(7):8312–8319

    Article  CAS  Google Scholar 

  8. Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77 (17):338 A-346 A. https://doi.org/10.1021/ac053456d

  9. Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z (2020) Nanosol SERS quantitative analytical method: a review. TrAC Trends Anal Chem 127:115885. https://doi.org/10.1016/j.trac.2020.115885

    Article  CAS  Google Scholar 

  10. Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118(10):4946–4980. https://doi.org/10.1021/acs.chemrev.7b00668

    Article  CAS  Google Scholar 

  11. Cialla-May D, Zheng X-S, Weber K, Popp J (2017) Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 46(13):3945–3961

    Article  CAS  Google Scholar 

  12. Ong TTX, Blanch EW, Jones OAH (2020) Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment. Sci Total Environ 720:137601. https://doi.org/10.1016/j.scitotenv.2020.137601

    Article  CAS  Google Scholar 

  13. Hu B, Sun D-W, Pu H, Wei Q (2020) Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta:120998

  14. Ding S-Y, You E-M, Tian Z-Q, Moskovits M (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46(13):4042–4076. https://doi.org/10.1039/c7cs00238f

    Article  CAS  PubMed  Google Scholar 

  15. Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  16. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826. https://doi.org/10.1103/RevModPhys.57.783

    Article  CAS  Google Scholar 

  17. Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69(9):4159–4161. https://doi.org/10.1063/1.437095

    Article  CAS  Google Scholar 

  18. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2 Mole Chem Phys 75(0):790-798. https://doi.org/10.1039/F29797500790

  19. Mie G (1908) Beitragezur Optiktruber Medien, speziell kolloidaler Metallosungen. Ann Phys 25:377–455

    Article  CAS  Google Scholar 

  20. Kerker M, Wang DS, Chew H (1980) Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl Opt 19(19):3373–3388. https://doi.org/10.1364/AO.19.003373

    Article  CAS  PubMed  Google Scholar 

  21. Kerker M (1987) Estimation of surface-enhanced Raman scattering from surface-averaged electromagnetic intensities. J Colloid Interface Sci 118(2):417–421. https://doi.org/10.1016/0021-9797(87)90477-2

    Article  CAS  Google Scholar 

  22. Ausman LK, Schatz GC (2009) On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. J Chem Phys 131(8):084708. https://doi.org/10.1063/1.3211969

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Y, Tian Y, Zou S (2015) Failure and reexamination of the Raman scattering enhancement factor predicted by the enhanced local electric field in a silver nanorod. J Phys Chem C 119(49):27683–27687. https://doi.org/10.1021/acs.jpcc.5b08726

    Article  CAS  Google Scholar 

  24. Zhang MX, You EM, Zheng P, Ding SY, Tian ZQ, Moskovits M (2020) Accurately predicting the radiation enhancement factor in plasmonic optical antenna emitters. J Phys Chem Lett 11(5):1947–1953. https://doi.org/10.1021/acs.jpclett.0c00304

    Article  CAS  PubMed  Google Scholar 

  25. Xiaoliang Ma, Yinghui Guo, Mingbo Pu, Xiong Li, Xiangang Luo (2019) Refined model for plasmon ruler based on catenary-shaped optical fields. Plasmonics (Norwell, Mass) 14(4):845–850

    Article  Google Scholar 

  26. Fang Y, Huang Y (2013) Electromagnetic field redistribution in hybridized plasmonic particle-film system. Appl Phys Lett 102(15):56

    Article  Google Scholar 

  27. Fang Y, Tian X, Huang Y (2015) Electromagnetic field redistribution in coupled plasmonic nanoparticle dimer-dielectric substrate system. Chem Phys Lett 619:139–143

    Article  CAS  Google Scholar 

  28. Luo X, Pu M, Li X, Guo Y, Ma X (2020) Young’s double-slit interference enabled by surface plasmon polaritons: a review. Journal of Physics D: Appl Physics 53(5):053001. https://doi.org/10.1088/1361-6463/ab50cd

    Article  CAS  Google Scholar 

  29. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  30. Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy: and related plasmonic effects, 1st edn. Elsevier, Amsterdam, Boston

    Google Scholar 

  31. Kippenberg T, Spillane S, Vahala K (2004) Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl Phys Lett 85(25):6113–6115

    Article  CAS  Google Scholar 

  32. Gerard J-M (2003) Solid-state cavity-quantum electrodynamics with self-assembled quantum dots. In: Single Quantum Dots. Springer, pp 269-314

  33. Koenderink AF (2010) On the use of Purcell factors for plasmon antennas. Opt Lett 35(24):4208–4210

    Article  CAS  Google Scholar 

  34. Kristensen PT, Van Vlack C, Hughes S (2012) Generalized effective mode volume for leaky optical cavities. Opt Lett 37(10):1649–1651

    Article  CAS  Google Scholar 

  35. Lukosz W, Kunz R (1977) Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power. JOSA 67(12):1607–1615

    Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 12074054, 11704058) and the Fundamental Research Funds for the Central Universities (Grant No. DUT19RC (3)007).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. supervised this work. J.Z. did enhanced numerical simulation and analyzed part of the data. Z.Y. analyzed the data. J.Z. and Z.Y. wrote the manuscript. Y.G. did the simulations for mode volume. All of the authors revised the paper.

Corresponding author

Correspondence to Yurui Fang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Yang, Z., Guo, Y. et al. A Detailed Investigation in the Enhancement Factor of Surface-Enhanced Raman Scattering in Simulation. Plasmonics 16, 2207–2214 (2021). https://doi.org/10.1007/s11468-021-01442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01442-5

Keywords

Navigation